Supersonic gas jet fueling experiments on NSTX

V. A. Soukhanovskii

Lawrence Livermore National Laboratory

H. W. Kugel, R. Kaita, A. L. Roquemore

Princeton Plasma Physics Laboratory

Boundary Physics ET Meeting
9 February 2005
Princeton, NJ

FY'04 status

- XMP-35 "SGI commissioning" successfully completed
- No exp. time was allocated for a physics experiment
- Preliminary results are encouraging: higher fueling efficiency, high gas jet collimation (expect higher wall saturation limit), good SOL penetration, compatibility with H-mode edge

Supersonic gas injector has become operational in FY'04

Off-line pressure measurements confirm high Mach number and highly collimated gas jet shape

Jet divergence half-angle: 6° - 25°

D₂: M = 4, $T \sim 60 - 160$ K, $\rho \sim 5$ x 10^{17} cm⁻³, Re = 6000

 D_2 : $V_{therm} \sim 1100 \text{ m/s}$, $V_{flow} = 2400 \text{ m/s}$

Flow rate is measured in situ on NSTX

NSTX gas injector flow rates:

HFS: 10 - 50 Torr I /s

LFS: 20 - 150 Torr I /s

NSTX SGI will be operated at 50 Torr I /s (= 3.5 x 10²¹ molecules/s)

- Flow rate (Torr I / s): $\Gamma = V_{NSTX} \Delta P / \Delta t$
- Future SGI may require $P_{plenum} > 2000 \text{ Torr}$

D₂ injections in 4-6 MW NBI heated plasmas (movies)

Shot 114473:

6 MW **high** β plasmas, injection at t=180 ms

 R_{SGI} =1.604 m, Z_{SGI} =0.198 m R_{sep} =1.49-1.52 m Shot 114475:

4 MW **H-mode** with type 1 ELMs, injection at t=300 ms

 R_{SGI} =1.604 m, Z_{SGI} =0.198 m R_{sep} =1.50-1.52 m

Supersonic gas jet penetrates well through a wide scrape-off layer

Gas jet penetration mechanism

- Single particle model is inapplicable
- Gas jet retains shape due to compressible flow considerations
- Gas jet eventually ionizes and creates a plasmoid
- Gas jet retains cluster-molecular-atomic-ion structure
- SOL/edge electrons with low T_e do not fully penetrate gas jet
- Plasmoid can not penetrate into the magnetized plasma due to insufficient velocity and high plasma kinetic and magnetic pressure
- Modeling must include particle, momentum, energy balance (Braginskii) equations with detailed reaction rates and neutral transport

(UEDGE+DEGAS 2)

SGI is an important element in the NSTX density control program

- Conventional gas injector fueling efficiency low (< 0.15)
- High efficiency fueling will help control density in plasmas with recycling control (cryopump or lithium)
- At present recycling flux is $\Gamma_{\rm div}$ < 5 x 10^{23}, $\Gamma_{\rm MC}$ < 5 x 10^{22} i/s

$$\frac{dN_p}{dt} = \Gamma_{gas} + \Gamma_{NBI} + \Gamma_{NBI_cold} + \Gamma_{NBI_cryo} + \Gamma_{wall} + \Gamma_{pump} + \frac{dN_n}{dt}$$

What we would like to do with SGI

- Start-up fueling
- Development of long-pulse fueling scenario -
 - L-mode flat-top fueling
 - H-mode access and flat-top fueling
- ELM control

What we would like to *measure* with D₂

Fueling efficiency as a function of SGI - LCFS distance

$$\eta = \frac{dN_i / dt}{\Gamma}$$

- Characterize edge plasma conditions (T_e, n_e, n₀, magnetics, plasma rotation, impurities)
- Determine impact on core plasma performance (τ_e , τ_p , E_{stored})
- Determine impact on wall saturation limit

Fueling experiments with D₂

Ohmic L-mode plasmas

- Set-up an LSN (PF2L) shot (2-3 shots) κ =1.8–1.9, δ =0.5, drsep=-2, outer gap 7-10 cm (R_{LCFS} = 150-154 cm)
- Scan SGI-LCFS distance by 1 cm (5-8 shots). SGI setup:
 100 ms pulse, start at 200 ms
- Do 10 min GDC between shots
- Use SGI instead of Inj#1, #2 for start-up (5 shots)

Aux. Heated L- and H-mode plasmas

- Do a small scan around optimal SGI position
- Do injections into ELM-free H-mode flat-top
- Do injections into ELM-y H-mode

H-mode access with SGI fueling

- Poloidal fueling location matters for the historically developed H-mode access scenarios on NSTX (R. Maingi)
- HFS-fueled LSN H-modes are most reproducible, L-H threshold lower (R. Maingi)
- XP 440 "Early H-mode" produced long H-mode plasmas with LFS fueling only. Required every 2nd He conditioning shot and 5+5 min He GDC.
- Use the XP 440 template (112548) and replace the conventional LFS injector with SGI, attempt to reach higher n_e with less gas and less wall saturation
- Inject D₂ in an HFS-fueled LSN H-mode to obtain higher density

ELM control with SGI

- ELM Type I, III, V have been observed on NSTX
- Gas and pellet injection is a proven ELM mitigation technique (change ELM type from I to III, change frequency and amplitude of type III by means of increasing power flow through the edge)
- Use SGI to inject D_2 and/or He to control edge power flow and/or pedestal T_e , n_{e_i} , p_e to delay ELMs, or change ELM type

Backup

Supersonic gas jet fueling efficiency η is 3-4 times higher than η of a conventional gas puff

- Compare two 6 MW NBI
 high-β pulses with and without supersonic gas injection
- Fueling efficiency

$$\eta = \frac{dN_i/dt}{\Gamma_{gas}}$$

- Γ_{gas} ~ 50 Torr I / s
- $dN_e/dt = 0.4 / 0.025 = 16 T I / s$
- $\eta = 0.3-0.4$
- Preliminary result based on one shot

DEGAS 2 neutral transport modeling consistent with general features of supersonic gas injection

- DEGAS 2 neutral transport model
- Conventional D_2 injection: T = 300 K
- Supersonic D_2 injector: $T = 50 \text{ K}, \ v_{flow} = 2200 \text{ m/s}$
- Not self-consistent: fixed T_e , n_e , are used
- D₂ injected from a 5 mm nozzle
- Good starting point for experiment interpretation

D⁺ Source Rate (m⁻³/s)

Comparison Of Source Velocity Distributions

DEGAS 2 D. P. Stotler

DEGAS 2 neutral transport modeling consistent with observed features of supersonic gas injection

Molecular density

Atomic density

 D_{α} intensity

