Variation in shape for large changes in external poloidal field coil currents PF1B $=+4$, PF2L $=0$, PF1AL $=-2, \mathrm{Ip}=100 \mathrm{kA}$, Hollowness param $=5$

| Case | R | Z | a | PF5 | PF3U | PF3L | PF2U | PF1AU |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | 0.9 | 0 | 0.5 | -0.48 | -0.51 | -1.01 | 0.24 | 0.14 |  |
| b | 0.75 | 0 | 0.5 | -0.41 | -0.65 | -1.4 | -0.008 | 0.055 |  |

a


Variation in shape for large changes in external poloidal field coil currents PF1B $=+4$, PF2L $=0$, PF1AL $=-2, I p=100 k A$, Hollowness param $=5$

| Case | R | Z | a | PF5 | PF3U | PF3L | PF2U | PF1AU |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | 0.9 | 0 | 0.5 | -0.48 | -0.51 | -1.01 | 0.24 | 0.14 |  |
| c | 0.75 | +0.1 | 0.4 | -0.48 | -0.44 | -1.4 | 0 | -1.0 |  |

a


## Case c



## Case c



TSC run with PF1B at $8 \mathrm{kA}, \mathrm{PF} 2 \mathrm{~L}$ at $2.2 \mathrm{kA}, \mathrm{PF} 1 \mathrm{AL}=0, \mathrm{PF} 3 \mathrm{~L}=-1 \mathrm{kA}, \mathrm{PF} 3 \mathrm{U}=-0.511 \mathrm{kA}$, PF2L=0.245kA, PF5=-0.48kA,PF1AU=0.143kA [ April 1, 2005]

Poloidal flux at 20 ms


Toroidal current


Toroidal current


Injector current


Vessel elements in TSC


Currents in the Passive plates (about 50 to 100 amps x 30)


$P F 1 A L=-2, P F 1 B=+4$, PF2L=0, $(R, Z)=(0.9,0), I p=100 k A, a=0.5, k=2, d=0.4$ Hollowness parameter $=5$




FF' profiles




Midplane poloidal flux (Wb)



PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.85,0), I p=100 k A, a=0.5, k=2, d=0.4$
Hollowness parameter $=5$


Rescaled equilibrium profiles; $\mathrm{P}^{\prime}$ and $\langle\mathrm{J}, \mathrm{B}\rangle /\langle\mathrm{Bt} / \mathrm{R} 2\rangle$
Computing new plasma Jphi++*
Computing poloidal flux from new plasma Jphi +..
Finding optimal coil currents for boundary match.+.
Found possible poloidal field 0-point at R,Z (m) [1] $=0.926170 .07574$

| Coil | Current (kA) | \% Change |
| ---: | ---: | ---: |
| OH | -0.0000000 | 0.7673 |
| PF1AU | 0.156602 | -0.6658 |
| PF2U | 0.299475 | -2.0672 |
| PF3U | -0.578565 | $0 .+3700$ |
| PF5 | -0.470780 | $0 .+7019$ |
| PF3L | -1.175204 | $0 .+2924$ |
| PF2L | 0.000000 | $0 .+8944$ |
| PF1AL | $-2+000000$ | $0 .+0000$ |
| PF1B | 4.000000 | 0.0000 |

RMS change in coil currents $\langle\mathrm{A})=\quad 2.6961942$

```
===> Using x-point boundary <===
Found possible poloidal field 0-point at R,Z (m) [1] = 0.92620 0.07592
    Iteration #, convergence error = 1, 1,200500e-01
    Iteration #, convergence error = 2, 2,808406e-03
    Iteration #, convergence error = 3, 6.802841e-04
    Iteration #, convergence error = 4, 1,330243e-04
    Iteration #, convergence error = 5, 2,673078e-05
    Changing theta coordinates to # EQUUAL-ARC+++
Flux coordinates computed in 1,1228840 seconds.
Sized PostScript image.+*
Finishing PostScript file creation and stopping ++*
===> IRSEP (cm) = -11.406841
RMS boundary change during iteration (mm) = 0.35841687
RMS boundary error at this iteration (mm) = 178,14188
Cycle_count = 57
```

PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.85,0), I p=100 k A, a=0.5, k=2, d=0.4$ Hollowness parameter $=5$










PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(\mathbf{R}, \mathbf{Z})=(\mathbf{0 . 8 0}, \mathbf{0}), \mathrm{Ip}=100 \mathrm{kA}, \mathrm{a}=0.5, \mathrm{k}=2, \mathrm{~d}=0.4$ Hollowness parameter $=5$


Rescaled equilibrium profiles; $\mathrm{P}^{\prime}$ and $\langle\mathrm{J}, \mathrm{B}\rangle /\langle\mathrm{Bt} / \mathrm{R} 2\rangle$
Computing new plasma Jphi +.+
Computing poloidal flux from new plasma Jphi,.+.
Finding optimal coil currents for boundary match+.+
Found possible poloidal field 0-point at R,Z (m) [1] $=0.884280 .08544$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(\mathbf{R}, \mathbf{Z})=(\mathbf{0 . 8 0}, \mathbf{0}), \mathrm{Ip}=100 \mathrm{kA}, \mathrm{a}=0.5, \mathrm{k}=2, \mathrm{~d}=0.4$ Hollowness parameter $=5$




FF' profiles





PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(\mathbf{R}, \mathbf{Z})=(\mathbf{0 . 7 5 , 0}), \mathrm{Ip}=100 \mathrm{kA}, \mathrm{a}=0.5, \mathrm{k}=2, \mathrm{~d}=0.4$ Hollowness parameter $=5$


Rescaled equilibrium profiles: $\mathrm{P}^{\prime}$ and $\langle\mathrm{J}, \mathrm{B}\rangle /\langle\mathrm{Bt} / \mathrm{R} 2\rangle$
Computing new plasma Jphi +.+
Computing poloidal flux from new plasma Jphi...
Finding optimal coil currents for boundary match.+.
Found possible poloidal field 0 -point at $\mathrm{R}, \mathrm{Z}(\mathrm{m})$ [1] $=0.845520 .10127$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(\mathbf{R}, \mathbf{Z})=(\mathbf{0 . 7 5 , 0}), I p=100 k A, a=0.5, k=2, d=0.4$ Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.75,0), I p=100 k A, \mathbf{a}=\mathbf{0 . 4}, k=2, d=0.4$
Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.75,0), I p=100 k A, \mathbf{a}=\mathbf{0 . 4}, k=2, d=0.4$ Hollowness parameter $=5$

$P F 1 A L=-2, P F 1 B=+4, P F 2 L=0,(R, Z)=(0.75,0), I p=100 k A, a=0.4, k=2, d=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.75,0), I p=100 k A, a=0.4, k=2, d=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0} .1), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0} .1), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$










PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0 . 2}), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0 . 2}), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$




FF' profiles





PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0 . 3}), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


Rescaled equilibrium profiles: $\mathrm{P}^{\prime}$ and $\langle\mathrm{J}, \mathrm{B}\rangle /\langle\mathrm{Bt} /$ R2 $\rangle$
Computing new plasma Jphi +.+
Computing poloidal flux from new plasma Jphi +.+
Finding optimal coil currents for boundary match...
Found possible poloidal field 0-point at R,Z (m) [1] $=0.836930 .40479$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0 . 3}), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$ $\star$







Midplane poloidal flux (Wb)




PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(0.75,+\mathbf{0 . 4}), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$


PF1AL $=-2$, PF1B $=+4$, PF2L=0, $(R, Z)=(\mathbf{0 . 7 5},+\mathbf{0} .4), I p=100 \mathrm{kA}, \mathrm{a}=0.4, \mathrm{k}=2, \mathrm{~d}=0.4$, Fix PF5 at -0.48 , Hollowness parameter $=5$




FF' profiles

$p$ and $p^{\prime}$ profiles



Midplane poloidal flux (Wb)



