DEGAS 2 Analysis of Edge Neutral Density Diagnostic Data

D. P. Stotler, P. W. Ross, et al.

Princeton Plasma Physics Laboratory
Princeton University
Princeton NJ 08543

REVISED: FEBRUARY 22, 2008

Camera View

- Started with Patrick's calibration data: four points in each of two planes,
- For each point, had (x, y, z) and pixel coordinates $(i x, i y)$.
- For each plane, fit:
$-A x+B y+C z+1=0$,
$-x=E \times i x+F \times i y+G$,
$-z=H \times i x+I \times i y+J$.
- Did this with singular value decomposition (SVD),
* Initial test and application of technique.
* Used again later.
- Fit errors are $<1 \mathrm{~mm}$,
* I.e., comparable to precision of calibration data.

Analysis Approach

- Contemplated 2-D analysis, but observed poloidal variation probably due to optics, filter, etc. (PWR).
- Instead analyze $i y=70$ row of pixels.
$-i x=37 \rightarrow 112$ is the useful window (PWR).
- Build 2-D SOL mesh based on 125333 at 245 ms (EFITO2),
- Could probably be used for other shots / times without significant error.
- "Fit" neutral density in zones intersected by camera chords to match camera data: $H_{i}=\sum_{j} S_{i j} N_{j}$.

Camera Image Processing and Scaling

- Apply a median filter to eliminate speckles.
- Then: abs_frame = (image back_image) \times rel_image \times freq $\times 10^{4}$, where:
- image = raw data,
- backimage = background frame (1204214),
- rel_image = calibration frame (1204215),
- freq $=$ framing rate (136 frames/s).
- Final factor takes units to photons / (m² s sr).
- Analyzing shot 125333, frame at 243 ms.

Data From DEGAS 2

- $S_{i j}=$ emission rate at zone $j \times$ "zone_frag(i,j)" [photons m / (s sr)],
- Chords:
- zone_frag(i,j) = length of chord i through zone j $/ 4 \pi$ (units: m / sr).
- Computed in 3-D during setup of DEGAS 2 geometry.
- Atomic physics data,
- Get $n=4 / n=1$ density ratio from H CR model as function of n_{e}, T_{e},
- Get n_{e} and T_{e} at miplane from Thomson scattering,
* Using 125333 at 248 ms .
- Interpolate onto mesh assuming constant on flux surfaces.
- Then, emission rate per atom $=$ $A_{4 \rightarrow 2}[N(n=4) / N(n=1)]$, with $A_{4 \rightarrow 2}=8.419 \times 10^{6} \mathrm{~s}^{-1}$.

Fitting Procedure

- Isolate zones for which zone_frag >

0 and order by R,
$-\Rightarrow 22$ zones (some are small triangles).

- $S_{i j}$ has 76 rows \& 22 columns.
- Fit is overdetermined,
$-\Rightarrow$ can used SVD.
- Unexpectedly difficult,
- SVD gives some densities <0.
- So, also using non-negative least squares fitting (Pomphrey).

Emission Matrix (photons m/s ster)

Results

- SVD \& NNLS agree at handful of points,
- Correspond to zones where $S_{i j}$ shows structure,
- Consider these densities well determined.
- Elsewhere, two results disagree significantly,
- Associated with small T_{e} or zone_frag,

- \Rightarrow these densities poorly determined.

Results

- SVD \& NNLS agree at handful of points,
- Correspond to zones where $S_{i j}$ shows structure,
- Consider these densities well determined.
- Elsewhere, two results disagree significantly,
- Associated with small T_{e} or zone_frag,
- \Rightarrow these densities poorly determined.
- Get neutral densities $\sim 5 \times 10^{19}$
 m^{-3}, significantly greater than $0.5-2 \times 10^{19} \mathrm{~m}^{-3}$ Patrick showed at APS.

Simple Analysis

- 1st two chords \& zones have larger $S_{i j}$ than others
- \Rightarrow can make first cut at their density: $H_{i}=\left(S_{i 1} N_{1}+S_{i 2} N_{2}\right)+\sum_{j>2} S_{i j} N_{j}$.
- Define $S_{i 1} N_{1}+S_{i 2} N_{2} \equiv\left(S_{i 1}+S_{i 2}\right) \bar{N}_{1,2} \Rightarrow \bar{N}_{1,2}<H_{i} /\left(S_{i 1}+S_{i 2}\right)$ is an upper bound.
- From Patrick's data: $H_{1}=H_{2}=2.9 \times 10^{20}$ photons / (m ${ }^{2} \mathrm{~s}$ sr).
- From matrix: $S_{11}+S_{12}=4.4$ photons $\mathrm{m} /(\mathrm{s} \mathrm{sr}) \Rightarrow \bar{N}_{1,2}=6.6 \times 10^{19}$ m^{-3}.
- And: $S_{21}+S_{22}=3.2$ photons $\mathrm{m} /(\mathrm{s} \mathrm{sr}) \Rightarrow \bar{N}_{1,2}=9.1 \times 10^{19} \mathrm{~m}^{-3}$.
- Are these matrix elements reasonable?
- At $T_{e}=10 \mathrm{eV}, n_{e}=10^{18} \mathrm{~m}^{-3}$, emission rate ~ 100 photons $/ \mathrm{s}$,
- For second chord, path length through second zone ~ 0.4 m,
- \Rightarrow matrix element $\sim 0.4 \times 100 / 4 \pi \simeq 3$.

DEGAS 2 Simulation Using Uniform Gas Source

DEGAS 2 Simulated Camera Image

Raw Image @ 243 ms

DEGAS 2 Density Profile May Not Be So Different

Conclusions I

- Key problem is sensitivity of emission rate to T_{e} \& relatively large variation in T_{e}. Effective exponents:
- At $1 \mathrm{eV}, \alpha_{T}=9$,
- At $10 \mathrm{eV}, \alpha_{T}=1$.
$-\alpha_{n}$ varies less $\sim 0.8-0.9$.
- \Rightarrow no reasonable way to concoct an "average" T_{e} profile looking at one or more TS profiles.
- Need to look at smaller R where emission less sensitive.

- Will still want to account for profile variations during frame.

Conclusions II

- Difficulties with inversion algorithms probably associated with this sensitivity,
- These are otherwise very capable algorithms,
$-\Rightarrow$ treat any algorithm here with caution.
- Patrick can use above simple estimates to check his numbers,
- Pin down source of discrepancy.
- Not sure what to make of uniform gas puff result from DEGAS 2.
- All of this ignores molecular contributions,
- Not sure if they are significant,
- Not even sure I have data to estimate.

