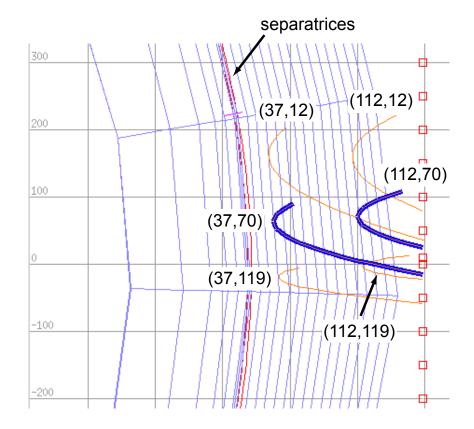
DEGAS 2 Analysis of Edge Neutral Density Diagnostic Data

D. P. Stotler, P. W. Ross, et al.

Princeton Plasma Physics Laboratory Princeton University Princeton NJ 08543

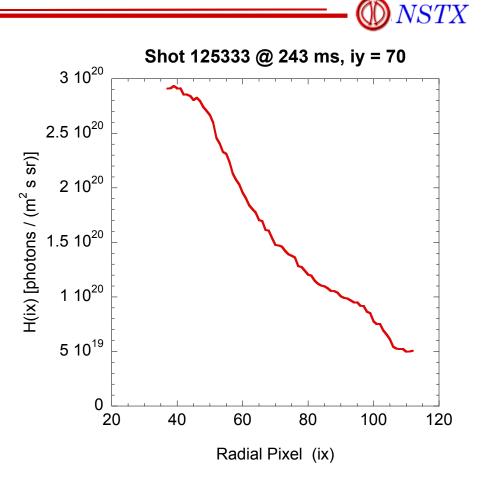
REVISED: FEBRUARY 22, 2008

Camera View

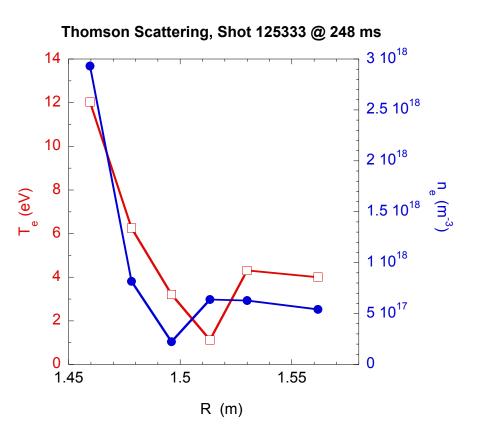

OONSTX

- Started with Patrick's calibration data: four points in each of two planes,
 - For each point, had (x, y, z) and pixel coordinates (ix, iy).
- For each plane, fit:
 - -Ax + By + Cz + 1 = 0,
 - $-x = E \times ix + F \times iy + G,$
 - $z = H \times ix + I \times iy + J.$
 - Did this with singular value decomposition (SVD),
 - * Initial test and application of technique.
 - * Used again later.
 - Fit errors are < 1 mm,
 - * I.e., comparable to precision of calibration data.

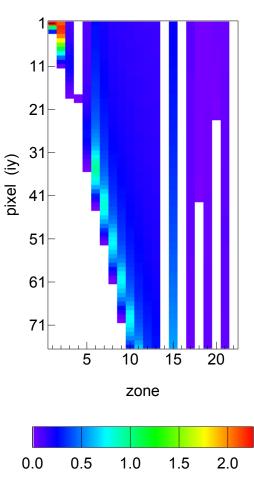
Analysis Approach


- Contemplated 2-D analysis, but observed poloidal variation probably due to optics, filter, etc. (PWR).
- Instead analyze iy = 70 row of pixels.
 - $ix = 37 \rightarrow 112$ is the useful window (PWR).
- Build 2-D SOL mesh based on 125333 at 245 ms (EFIT02),
 - Could probably be used for other shots / times without significant error.
- "Fit" neutral density in zones intersected by camera chords to match camera data:

 $H_i = \sum_j S_{ij} N_j.$


Camera Image Processing and Scaling

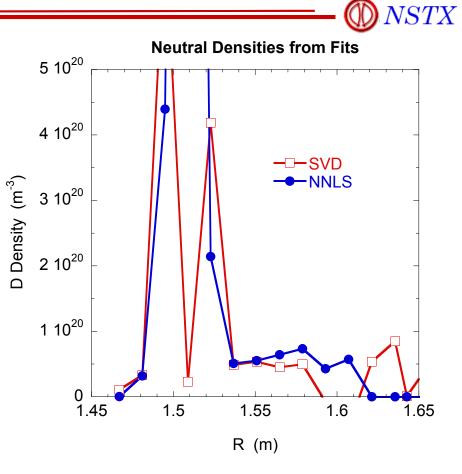
- Apply a median filter to eliminate speckles.
- Then: abs_frame = (image back_image) × rel_image × freq ×10⁴, where:
 - image = raw data,
 - back_image = background frame (1204214),
 - rel_image = calibration frame (1204215),
 - freq = framing rate (136 frames/s).
 - Final factor takes units to photons / (m² s sr).
- Analyzing shot 125333, frame at 243 ms.


Data From DEGAS 2

- S_{ij} = emission rate at zone $j \times$ "zone_frag(i,j)" [photons m / (s sr)],
- Chords:
 - zone_frag(i,j) = length of chord i through zone j $/4\pi$ (units: m / sr).
 - Computed in 3-D during setup of DEGAS 2 geometry.
- Atomic physics data,
 - Get n = 4/n = 1 density ratio from H CR model as function of n_e, T_e ,
 - Get n_e and T_e at miplane from Thomson scattering,
 - * Using 125333 at 248 ms.
 - Interpolate onto mesh assuming constant on flux surfaces.
 - Then, emission rate per atom = $A_{4\rightarrow2}[N(n = 4)/N(n = 1)],$ with $A_{4\rightarrow2} = 8.419 \times 10^6 \text{ s}^{-1}.$

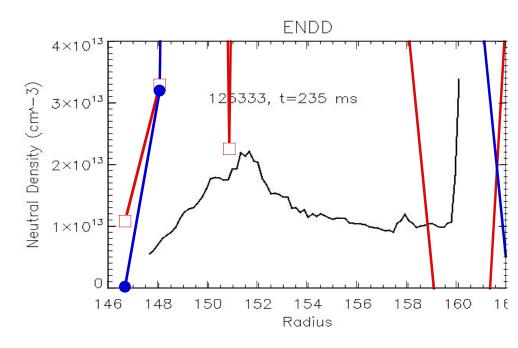
Fitting Procedure

- Isolate zones for which zone_frag > 0 and order by R,
 - \Rightarrow 22 zones (some are small triangles).
- S_{ij} has 76 rows & 22 columns.
- Fit is overdetermined,
 - \Rightarrow can used SVD.
- Unexpectedly difficult,
 - SVD gives some densities < 0.
 - So, also using non-negative least squares fitting (Pomphrey).



NSTX

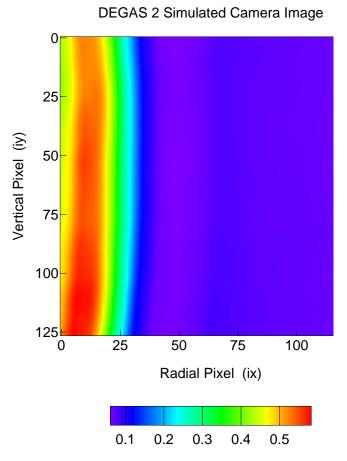
Emission Matrix (photons m / s ster)


Results

- SVD & NNLS agree at handful of points,
- Correspond to zones where S_{ij} shows structure,
- Consider these densities well determined.
- Elsewhere, two results disagree significantly,
 - Associated with small T_e or zone_frag,
 - \Rightarrow these densities poorly determined.

Results

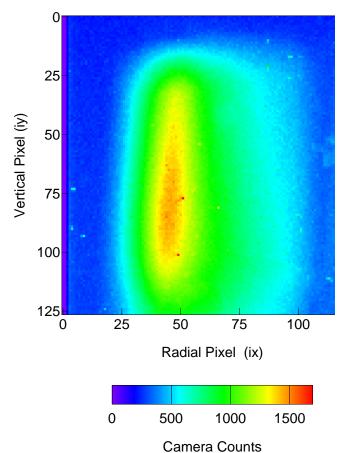
- SVD & NNLS agree at handful of points,
- Correspond to zones where *S*_{*ij*} shows structure,
- Consider these densities well determined.
- Elsewhere, two results disagree significantly,
 - Associated with small T_e or zone_frag,
 - \Rightarrow these densities poorly determined.
- Get neutral densities $\sim 5 \times 10^{19}$ m⁻³, significantly greater than $0.5 2 \times 10^{19}$ m⁻³ Patrick showed at APS.


(NSTX

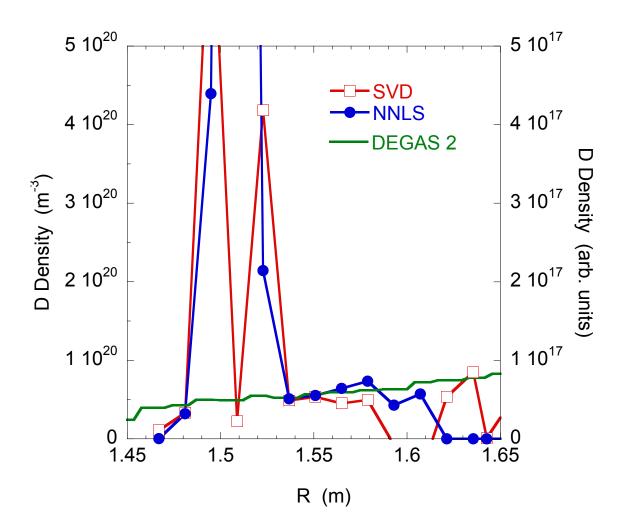
• 1st two chords & zones have larger S_{ij} than others

- \Rightarrow can make first cut at their density: $H_i = (S_{i1}N_1 + S_{i2}N_2) + \sum_{j>2} S_{ij}N_j$.
- Define $S_{i1}N_1 + S_{i2}N_2 \equiv (S_{i1} + S_{i2})\overline{N}_{1,2} \Rightarrow \overline{N}_{1,2} < H_i/(S_{i1} + S_{i2})$ is an upper bound.
- From Patrick's data: $H_1 = H_2 = 2.9 \times 10^{20}$ photons / (m² s sr).
- From matrix: $S_{11} + S_{12} = 4.4$ photons m / (s sr) $\Rightarrow \bar{N}_{1,2} = 6.6 \times 10^{19}$ m⁻³.
- And: $S_{21} + S_{22} = 3.2$ photons m / (s sr) $\Rightarrow \bar{N}_{1,2} = 9.1 \times 10^{19} \text{ m}^{-3}$.

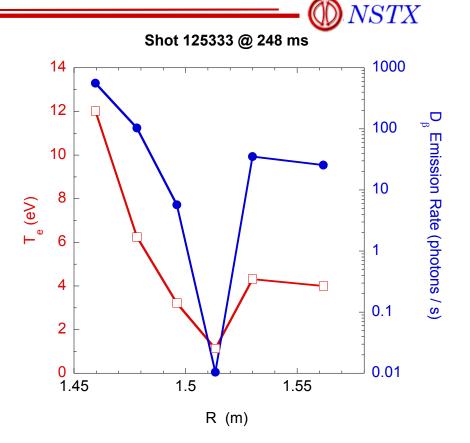
- Are these matrix elements reasonable?
 - At $T_e = 10 \text{ eV}$, $n_e = 10^{18} \text{ m}^{-3}$, emission rate ~ 100 photons / s,
 - For second chord, path length through second zone \sim 0.4 m,
 - \Rightarrow matrix element $\sim 0.4 \times 100/4\pi \simeq 3$.


DEGAS 2 Simulation Using Uniform Gas Source

D_beta Emission Rate (arb. units)


Raw Image @ 243 ms

NSTX


Look very different! Are they really? Filter? Optics?

DEGAS 2 Density Profile May Not Be So Different

Conclusions I

- Key problem is sensitivity of emission rate to T_e & relatively large variation in T_e. Effective exponents:
 - At 1 eV, $\alpha_T = 9$,
 - At 10 eV, $\alpha_T = 1$.
 - α_n varies less $\sim 0.8 0.9$.
- ⇒ no reasonable way to concoct an "average" T_e profile looking at one or more TS profiles.
- Need to look at smaller *R* where emission less sensitive.
- Will still want to account for profile variations during frame.

Conclusions II

• Difficulties with inversion algorithms probably associated with this sensitivity,

- These are otherwise very capable algorithms,
- \Rightarrow treat any algorithm here with caution.
- Patrick can use above simple estimates to check his numbers,
 - Pin down source of discrepancy.
- Not sure what to make of uniform gas puff result from DEGAS 2.
- All of this ignores molecular contributions,
 - Not sure if they are significant,
 - Not even sure I have data to estimate.