Super X Divertor for NSTX

P. Valanju, M. Kotschenreuther, S.M. Mahajan
Institute for Fusion Studies
The University of Texas at Austin

With SOLPS results from

J. Canik, R. Maingi

Oak Ridge National Lab

PPPL, June 18, 2008

Goals of this talk

Introduce Super-X Divertor (SXD):

- SD to XD to SXD
- SXD basic idea (and differences between XD and SXD)
- SXD advantages
- Many SXD examples that we have designed so far

Start a discussion of NSTX constraints for SXD implementation:

- Since SXD design is "easy", system goals and constraints dominate
- Physics goals for an SXD trial on NSTX
- NSTX engineering constraints that will limit SXD design flexibility
- Pumping, baffling, support structures, impurity isolation, ...

Limiters to Divertors to X-Divertors to Super-XD

Super X Divertor (SXD)

• Key idea: $\theta > 1^0$ limit => only "knob" is increased R_{div}

$$A_w = \frac{B_{p,sol}}{B_{div}} \frac{A_{sol}}{\sin(\theta)} \approx \left[\frac{B_p}{B_t}\right]_{sol} \frac{R_{div}}{R_{sol}} \frac{A_{sol}}{\sin(\theta)}$$

- Key surprise: Generally easy to design SXD
 - Small PF coil modifications are needed for a variety of devices
 - We have SXDs for HPDX, NHTX, FDF, CTF, ARIES, SLIM-CS ...
- SOLPS shows it works for NHTX & FDF (Canik, Maingi)

Flux expansion equivalent to plate tilt

- One can increase wetted area by either tilting the plate or increasing flux expansion at the plate (i.e., tilting the field)
- Under the 1^o limit, both yield the *same* max wetted area
- ITER engineering basis limit is 1° , ITER plate is at ~ 2°
- This limits *all* flux-expanders (SD, XD, SXD, Snowflake ...)

– The new key SXD idea is increasing R_{div}

- Whatever the minimum angle allowed, the larger R_{div} of SXD
 => SXD does that much better than other flux expanders
- One can use XD or snowflake to design an SXD

SXD is very insensitive to plasma changes

- In general (for NHTX, FDF ...), SXD strike point, wet area, line length, B line angle, ALL are insensitive to sudden changes in plasma current
- Possible reason: plasma is far, while SXD coils are near the SXD plate
- Preliminary snowflake studies (NHTX case) show greater sensitivity
 - Because higher-order main X point near plasma easier to perturb?
- Simulated by adding two "wall simulator coils" & fixing all others
- Vary I_{plas} , R_0 , a etc. by $\pm 3\%$ each and record main X and SXD shifts

Main X & SXD Shift (cm) vs $dI_{plas} \pm 3\%$

Neutron damage to divertor - critical issue

- Tungsten "armor" on a high thermal conductivity actively cooled substrate
 - High conductivity substrates (Cu or C) severely deteriorate after only a few dpa
 - FDF walls must tolerate ~ 60 dpa (but at heat flux less than divertor)
 - Promising main chamber wall materials must be tested at ~ 60 dpa
 - ITER divertor technology deteriorates strongly at ~ 1 dpa (Cu-C)
- Only hypothetical divertor materials (W-composites) might tolerate ~ 60 dpa
 - Decades away with much material development effort in the EU and Japan
 - The US virtually does not have a fusion material development program anymore
 - Slow development would hamstring any high duty cycle DT device (CTF, DEMO)
 - Cannot credibly field a high duty cycle FDF without a divertor with a high chance of survival under *simultaneous copious fusion neutron and SOL heat fluxes*.
- SXD: substantial shielding of divertor plates for FDF and future CTF, DEMO
 - With SXD, ITER divertor technology may well suffice for FDF high duty cycle DT
- This alone may make SXD essential for all next generation fusion devices
 ***IFS**

SXD: Can it better survive disruptions?

- Next generation devices: high- β_N operation is desirable
 - Must anticipate significant number of disruptions on the road to this goal
- SXD can probably improve survivability to disruptions or ELMs:
 - -Heat flux is spread over a larger area further from plasma
 - Ions travel a much longer distance, so heat pulse could also be spread out significantly in time (material damage ~ $1/time^{1/2}$)
 - The divertor plate is not in the way of halo currents from a VDE
 - Wall can be made to be a more mechanically robust structure than a divertor plate, since it does not have to be designed to operate also near the engineering limit on high heat flux

SXD Advantage Summary

- SXD can lower peak heat flux significantly
 - With 1^o tilt, wSOL = 5 mm, reduces need for impurity radiation
- Long Bline lowers T < 10 eV => more radiation possible
- SXD simultaneously shields from neutron + heat damage
 - Only SXD plate does not face the plasma neutrons directly
- SXD design space is large, insensitive to plasma changes

SXD isolation from plasma is generally good (ergodize, sweep ...?)

Example: Super XD saves NHTX from heat flux menace

- With SXD & 30 MW, peak heat flux can be kept under 10 MW/m^2
- Not possible with standard divertor (peak stays at 30-40 MW/m²)
- SOLPS 2-D calculations confirm what we expected from our 1-D code

Very First SXD for CTF

- Only had to move one coil. No extra coils were needed.
- SDX MA-m actually lower than for SD!

FDF SD case used in these SXD Designs

Best place to fit SXD is in the TF corner - there is enough room

First try SXD for FDF - Only 1 SXD coil

- With just one extra PF coil (well-shieldable, in TF corner)
- Very first solution looked quite good, was easy to get

Very first case (1 SXD coil) is already close

Div Plate	B Angle Degrees	B Length [m]	R _{div} [m]	Max Area m ² (at 1 ⁰)	T eV at Peak	SOLPS MW/m ²
SD	1.28	27.4	2.34	3.27	150	58
XD	0.93	39.7	2.51	3.51	150	28
SXD	1.2	61.6	4.01	5.61	10	18

For 5 mm wSOL at z=0

- SXD MW/m² low due to large R_{div} , T low due to longer line length
- SXD peak is the lowest, need less radiation to reach 8 MW/m²
- Grid issues near plate make it hard to tilt more in SOLPS code

- just the first case we ran, can further optimize

- Try to get more SXD flux expansion by splitting the SXD coil
- Also try to use the split SXD coil to get even longer line length

Split one SXD coil into 2 coils

- SXD with two extra PF coils (= one SXD coil split into 2)
- Another coil -> another extra X point -> more flux expansion & line length

2 SXD coils FDF case: longer line

Div Plate	B Angle Degrees	B Length [m]	R _{div} [m]	Max Area m ² (at 1 ⁰)	T eV at Peak	SOLPS MW/m ²
SD	1.14	28.0	2.33	3.30	150	58
XD	1.07	42.0	2.51	3.56	150	28
SXD	1.00	66.6	4.04	5.73	< 8?	<18?
	For 5 mm wSOL at z=0					

• 2 SXD coils together carry ~ same net current as 1 SXD coil

- Each extra coil => another nearby X point => longer B Length
- Larger flux expansion at SXD => easier grids for SOLPS
- Coils appear to be still in neutron-shieldable corner locations
- So try even further coil splitting

Split one SXD coil into 4 small coils

- With four extra PF coils (= one coil split into 4, carry ~ same total current)
- The pattern is now clear: extra coils -> extra X -> increase B Length

4 SXD coils: even longer line, more flux exp

Div Plate	B Angle Degrees	B Length [m]	R _{div} [m]	Max Area m ² (at 1 ⁰)	T eV at Peak	SOLPS MW/m ²
SD	1.18	27.8	2.34	3.30	150	58
XD	0.92	40.3	2.51	3.54	150	28
SXD	1.0	73.6	3.95	5.57	< 5?	<18?
	For 5 mm wSOL at z=0					

Net MA-m actually went a bit lower than 2 SXD coils case

- B Line further increased to ~ 74 m, R_{div} was kept about same
- Flux expansion at SXD also up to 4.64 => easier on SOLPS
- SOLPS run in progress: expected results in red
- These 3 cases show the great flexibility of SXD design space

- Need to know other constraints & goals to optimize further

Very Preliminary SXDs for NSTX

- Shown just to give an idea of what NSTX SXDs may look like
- No NSTX constraints yet on NSTX-SXD design to be discussed here

NSTX SXD Test Issues

SXD should be tested on NSTX - soon, but ...

SXD Test on NSTX should not be "half-hearted"

• Should not test an XD or "Partial SXD" - with the risk of passing premature judgments on SXD

For further SXD Design, together we need to:

- Better specify specific physics goals for such a test
- Better specify NSTX Constraints & Flexibility
- Design a few SXD configurations that fit these constrains
- Calc SOLPS results to see if substantial gains are predicted
- Calc pumping, baffling, impurity isolation, etc ...
 ***IFS**