

Supported by

Office of Science

XP923: Thermal Transport in the boundary (FY2010 Joint Research Target)

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi

Need support from: J.-W. Ahn, S. Paul, J. Kallman, R. Maqueda, V. Soukhanovskii

NSTX Boundary Physics Topical Science Group Princeton, NJ March 23, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

FY 2010 Joint Research Target: thermal heat transport assessment

- Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape
 off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER.
- In FY2010, FES will measure the divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality, beta, parallel heat flux, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

- Three meetings with C-Mod and DIII-D scientists have helped define how to conduct experiments and modeling/analysis
- Basic idea: complete scans of several quantities known to affect the divertor heat flux profile (e.g. P_{NBI}, n_e, I_P, L- vs H -mode, NBI vs. RF)
- Basic modeling: simulation of data with 2-D codes (e.g. b2 /EIRENE, UEDGE, DEGAS-2) to assess how heat is transported between midplane -> X-point -> divertor
 - DIII-D and NSTX show dominant parallel transport; not sure in C-Mod
- Detailed modeling: prediction of SOL heat flux widths from turbulence models, e.g. SOLT code
 - D'Ippolito (Lodestar) participated in discussions @ UCLA

New data wish list for milestone

- Results of meetings w/C-Mod and DIII-D scientists:
 - Similar poloidal cross-section: κ =1.7-1.8, δ_L ~0.5, LSN
 - I_p and B_t scans with combinations selected to match q_*
 - Desire overlapping midplane and divertor ${\nu_e}^{\star}$ ranges (density scan)
 - Desire data in both sheath- and flux-limited regimes
 - Power scan, including ohmic, and large as possible in L -mode (reversed grad-B drift?)
 - NBI and RF comparisons in NSTX and DIII-D to see effect of fast ions
- Additional wish list for NSTX center stack upgrade:

– Desire to do elements of this also at κ =2-2.2, δ_L ~0.7, LSN

- New and existing divertor diagnostics in NSTX:
 - New fast divertor IR camera (Ahn)
 - New 20 channel divertor bolometer (Paul)
 - Slow IR cameras (Maingi)
 - 1-D CCD cameras: D_{α} , D_{γ} ?, C-III (Soukhanovskii)
 - Divertor Langmuir probes: R=0.495m, 0.797m (Kallman)
 - Midplane gas puff imaging (Maqueda)
 - Divertor X-point imaging (Maqueda)

Much data from past experiments

• Power accounting and heat flux scaling with fine P_{NBI} , I_P scans in δ =0.5, κ =2, LSN discharges

8

7

6

Data + guide line

- P_{NBI} scan to vary v_e^* (flux -> sheath limited)
- I_p scan to vary cross-field transport rate
 - Profiles get steeper with I_p , does turbulence change also?
 - Will naturally vary q95
 - Should we do some discharges at fixed q95 to separate SOL connection length from this variation?
 - Or do an explicit B_t scan to vary SOL connection length?
- n_e scan to vary v_e^* , divertor radiated power

- Should we include a partial detachment comparison?

- Outer strike point scan over nearest divertor Langmuir probes: R=0.8m (low δ), R=0.5 m (hi δ)
- RF vs. NBI comparison
- Ohmic + L-mode power scan (reversed B_t? Or USN?)

Proposal for 2009: focus on low δ data because it may be difficult to get next year

- ✓ P_{NBI} scan in 1 MW increments: 0-6 MW (0.8 MA)
- ✓ I_p scan in 0.1 MA increments: 0.6-1.0 MA
 - 4 MW, 5MW or 6 MW as baseline?
 - Also do the end points at fixed $B_t/I_p=0.5625$ T/MA
 - Still need to determine what q* needed to match C-Mod, DIII-D
- \checkmark n_e scan with natural density rise, + small fueling variation? 5
- Outer strike point scan over nearest divertor Langmuir probes: R=0.8m
 (build in)
- X RF vs. NBI comparison
 - Not possible pre-Lithium because of RF availability schedule?
- Ohmic + L-mode power scan (reversed B_t? Or USN?)
 - Reversed B only possible at end of run, ie not pre-Lithium
- Are repeat shots needed for filter variations, etc?

NSTX

8

12