

7 5 7

E

Edge and divertor physics on JET: effect of toroidal field reversal

O EFDA

presented by W. Fundamenski on behalf of:

R.Pitts^b, P. Andrew, X. Bonnin^c, A. V. Chankin^d, Y. Corre^c, G. Corrigan, D. Coster^d, I. Duran^e, T. Eich^d, S. K. Erents, A. Huber^f, S. Jachmich^g, G. Kirnev^h, M. Lehnen^f, P. J. Lomas, A. Loarteⁱ, G. F. Matthews, J. Rapp^f, C. Silva^j, M. F. Stamp, J. D. Strachan^k, E. Tsitrone^c and EFDA-JET contributors^{*}

Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK
b) CRPP-EPFL, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland
c) Association EURATOM-CEA, CEA Cadarache, 13018 St. Paul lez Durance, France.
d) Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmann Str. 2., D-85748, Garching, Germany
e) Institute of Plasma Physics, Association EURATOM-IPP.CR, Prague, Czech Republic
f) FZJ Julich GmbH/Euratom Institut für Plasmaphysik, TEC, Julich D-52425 Germany
g) LPP, ERM/KMS, Association Euratom-Belgian State, B-1000, Brussels, Belgium
h) Moscow Nuclear Fusion Institute, RRC "Kurchatov Institute", 123182 Moscow, Russia
i) EFDA-CSU, Max-Planck-Institut für Plasmaphysik, D-85748, Garching Germany
j) Associação Euratom-IST, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
k) Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
*See annex to J. Pamela, Fus. Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002), IAEA, Vienna

Plasma transport

is always a

3-D process !

SOL

R

LCFS

Ε

Outline

- Motivation
- Basic Theory
- Recent JET experiments

EFDA

- Mass & momentum transport
 - Parallel SOL flows
 - Carbon migration
 - L- vs. H-mode
 - Interpretation & Modelling
- Energy transport
 - Divertor power asymmetries
 - Radial profiles of target power flux
 - Interpretation & Modelling
- Conclusions

JG04.

Jet

Motivation: ITER

Issues	Physics
L-H & III-I transitions	H-mode (ETB) barrier
Magnitude of SOL flows: Tritium co-deposition Helium ash removal Carbon migration	Mass & Momentum transport Classical drifts, Mechanisms of D_{\perp} , v_{\perp} , η_{\perp} (θ)
Power exhaust: L- & H-mode (inter-ELM & ELM) divertor tile power loading in-out asymmetries	Energy transport Poloidal: Classical drifts Radial: Mechanisms of χ_{\perp} (θ) Classical vs. Turbulent Ion Orbit Loss
Improve theoretical understanding	

Jet

Experiments Principal diagnostic data used in this talk **Divertor spectroscopy Reciprocating Mach** probes D_{α} , CIII **Rev-B (B** \times ∇ **B** \uparrow) campaign: attempt to match fwd-B plasmas Typical EDGE2D MkIIGB SRP divertor grid Many pulses in DOC-L, SNL Both B_{ϕ} and I_{p} reversed, so helicity constant Key observables: IR target views SOL flows & fluctuations **Divertor tile Divertor asymmetries** thermcouples Impurity migration Langmuir probes JG00 311/

O EFDA

E

Mass & Momentum Transport

- Observation of large || SOL flows in nearly all tokamaks
- Not fully understood at present
- Complex interplay between three directions (||, \land , \bot)
 - Phirsch-Schluter flows
 - Ionization driven flows
- Classical drifts play a major role
- Overviews

O EFDA

• Chankin: PSI12,14,EFPW2003

Parallel SOL flow near top of vessel $M_{\parallel} \sim 0.5 (B \times \nabla B \downarrow) vs. M_{\parallel} \sim 0 (B \times \nabla B \uparrow)$

B×∇B↓ strong parallel flow towards inner divertor at RCP
B×∇B↑ flow stagnates at RCP

Near separatrix $M_{\parallel} \sim average \ M_{\parallel} \sim 0.2$ - 0.3

Ε

Ε

SOL flow confirmed by RFA T_i data

Retarding Field Analyser (RFA)

 $\begin{array}{l} j_{sat} \text{ and } T_i \text{ on both sides of probe} \\ j_{sat} \text{ ratio gives } M_{||} \text{ (previous slide)} \\ T_i \text{ ratio consistent with } M_{||} \end{array}$

$$B \times \nabla B \downarrow : T_{i,i\text{-side}} / T_{i,e\text{-side}} > 1$$
$$B \times \nabla B \uparrow : T_{i,i\text{-side}} / T_{i,e\text{-side}} \sim 1$$

Ions depleted on downstream side in ~ agreement with theory

Jet

E

Target T_e, n_e profiles in matched L-modes

24.05.04

O EFDA

W. Fundamenski, R.Pitts et al., PSI16, Portland, Maine, USA

Jet

Ε

D_{α} and C^{III out-in asymmetries

Large database of shots with a range of B, I, P, ne

B×∇B↓ More D_α and less C^{III} in inner divertor, both Ω, L & H B×∇B↑ Balanced D_α and C^{III} in both Ω, L & H

JET

Ε

Surface layers on outer target (IR data)

O E E DA

High ΔT_{surf} indicates poorly adhered target surface layers

B×∇B↓ Surface layers only on inner target B×∇B↑ Layers grow on outer target, still present on inner target

Ε

Modelling with 2-D fluid codes + drifts

O EFDA

EDGE2D/NIMBUS with INNER 0.2 Classical drifts in core and SOL 0.1 Radial profiles $D\perp$, $\chi\perp$ to best Mach Number OUTE match target probe Gas puff from top of torus (as in 0.2 experiment) 0.3 Bu B×∇B↓ M_{||} < 0.1 over most of the SOL, from IMP to OMP 0.3 pro NNER 0.1 OUTE 0.1 B×∇B↑ П .30 mm **Stagnation point near top** r = 21.60 mm 0.3 r = 35.00 mm $M_{\parallel} > 0.1$ over most of the SOL 2 3 5 Poloidal distance (m) from IMP to OMP OUTER INNER

JET

Ε

Radial variation of Mach number at RCP

💭 H H DA

JET

Ε

Other SOL flow modelling approaches

E

Energy Transport

O EFDA

- Sources and Sinks
 - Power deposited in core
 - Exhaust via SOL to div./wall
- Most energy flows out on LFS
 - Large surface area ~ R
 - Shafranov shift
 - LFS bad curvature,
 - higher level of fluctuations and MHD turbulence

FUSION DEVELOPMENT AGREEMENT EUROPEAN

Jet

Ε

Matched L-mode power scans: 2-D radiation

Example: NBI L-mode, $I_p = 2.0$ MA, B = 2.4 T

OEFDA

Ε

$P_{div}^{outer}/P_{div}^{inner}$ modified by B× ∇ B direction

 $P_{target} = P_{div} - P_{rad}^{1.0}$

Huber P3-22

JT-60U: P_{div} balanced and insensitive to $B \times \nabla B$ caused by radiation asymmetries

On JET, this only the case at high density/low power

What is happening ?!

Ε

Classical drifts in \land dir. with B $\times \nabla B \downarrow$ vs. \uparrow

Fluid drift velocity:

 $\begin{aligned} \mathbf{v}_{\sigma} &= \mathbf{v}_{||\sigma} \mathbf{b} + \mathbf{v}^{\mathsf{E}} + \mathbf{b} \times (\nabla \mathbf{p}_{\perp \sigma} - \mathbf{R}) / \mathbf{m}_{\sigma} \mathbf{n}_{\sigma} \Omega_{\sigma} \\ &+ \{ (\mathbf{v}_{t||\sigma}^2 - \mathbf{v}_{t\perp \sigma}^2 + \mathbf{v}_{||\sigma}^2) / \Omega_{\sigma} \} \mathbf{b} \times \mathbf{b} \cdot \nabla \mathbf{b} \end{aligned}$

$$\mathbf{v}^{\mathsf{E}} \sim \mathbf{E} \times \mathbf{b}/\mathsf{B}, \ \mathbf{b} = \mathbf{B}/\mathsf{B}, \ \Omega_{\sigma} = \mathbf{e}_{\sigma}\mathsf{B}/\mathsf{m}_{\sigma}, \ \mathsf{v}_{t\sigma} = (\mathsf{T}_{\sigma}/\mathsf{m}_{\sigma})^{1/2}$$

Energy flux due to drifts:

 $\begin{aligned} \mathbf{q}_{\sigma} &= 2.5 p_{\sigma} < \mathbf{v}_{gc} >_{\sigma} - \nabla \times (2.5 p_{\sigma} T_{\sigma} \mathbf{b} / e_{\sigma} B) \\ &\approx 2.5 p_{\sigma} \mathbf{v}_{\sigma} + 2.5 p_{\sigma} v_{t\sigma} \rho_{\sigma} \mathbf{b} \times \nabla T_{\sigma} / T_{\sigma} \end{aligned}$

Radial E-field in SOL = $E_{\perp,SOL} \sim 3\nabla_{\perp}T_{e,t}$

Relative strength of drifts increases with power

$$\begin{array}{l} {q_{\theta i}}^{\mathsf{E}} / {q_{\theta i}} \thicksim 3 \ \rho_{\theta s} / \lambda_{\mathsf{T}e,t} \\ {q_{\theta i}}^{\nabla\mathsf{T}} / {q_{\theta i}} \thicksim \pm \rho_{\theta s} / \lambda_{\mathsf{T}i} \end{array}$$

Ε

Matched pairs of Z-swept shots

18

Ε

Radial profiles insensitive to $B \times \nabla B$ dir.

JET

Ion orbit loss (IOL) modelling with ASCOT

O EFDA

IOL target power profiles from ASCOT

Both inner and outer target power profiles, strongly affected by $B \times \nabla B$ dir

Not consistent with experiment \Rightarrow IOL not dominant in the SOL

Fundamenski P3-15

Ε

Global power balance

Large database of shots with a range of B, I, P, n_e (110 shots)

Deposited power asymmetries

Large database of shots with a range of B, I, P, n_e (110 shots)

Ε

Power asymmetry scaling consistent with classical drift effects

Linear scaling with power / density Weak, if any, B scaling

Consistent with predictions based

Strong evidence for drift effects

Ε

Jet

Jet

Modelling with 2-D fluid codes

EDGE2D/NIMBUS with

ורבוס

Ε

Conclusions

- Strong evidence for classical drift effect in SOL transport
 - qualitatively explains SOL flows and C migration
 - active area of research !
 - quantitatively explains power asymmetries
 - transport, rather than radiation, responsible
- Radial energy transport insensitive to $B{\times}\nabla B$ dir
 - consistent with classical ion conduction: fits all JET data !!!
 - ion orbit loss ruled out as dominant mechanism in inter-ELM
- Stronger drift effects in L-mode and during ELMs
 - under investigation

O EFDA

- More in the following presentations
 - Orals: Matthews R-1, Strachan O-2, Kirnev O-8
 - Posters: Andrew P2-58, Fundamenski P3-15, Huber P3-22

Jet

L-H and III-I transitions

- L-H power threshold **independent** of $B \times \nabla B$ direction (\downarrow vs. \uparrow)
- III-I power threshold ~2x higher with $B\!\!\times\!\!\nabla B\!\!\uparrow$

O EFDA

ELM D $_{\alpha}^{outer}$ **/D** $_{\alpha}^{inner}$ in matched Type-I H-modes

O E FIDA

Ε

JET

Ε

SOL flow confirmed by TTP v_{θ} data

Turbulent Transport Probe (TTP)

- measures \textbf{j}_{sat} , \textbf{T}_{e} and \textbf{v}_{θ}
- j_{sat} ratio gives M_{\parallel}
- $\rm T_e$ gives $\rm c_s$
- v_{θ} poloidal phase vel. of fluctuations

$$M_{\parallel}$$
 (TTP) ~ M_{\parallel} (RFA)
 $v_{\theta} \ll M_{\parallel}c_{s}B_{\theta}/B$

SOL flow on JET not an artefact of toroidal rotation, as reported from C-mod (LaBombard et al.)

Ε

Deposited power profiles for matched pairs

O EFDA

0.2 m2/s (flux space), 4 MW, 2e19 m-3, D+C, SOL+core drifts

EFDA

Classical drifts in \land dir. with B× ∇ B \downarrow vs. \uparrow

Guiding centre picture: $\langle v^{gc} \rangle_{\sigma} = \langle v_{\parallel}^{gc} \rangle_{\sigma} \mathbf{b} + \mathbf{v}^{E}$ $+ (v_{t\perp\sigma}^{2}/\Omega_{\sigma}) \{\mathbf{b} \times \nabla B/B + \mathbf{b}(\mathbf{b} \cdot \nabla \times \mathbf{b})\}$ $+ \{(v_{t\parallel\sigma}^{2} + v_{\parallel\sigma}^{2})/\Omega_{\sigma}\}\mathbf{b} \times \mathbf{b} \cdot \nabla \mathbf{b}$

Fluid picture: $\mathbf{v}_{\sigma} = \mathbf{v}_{||\sigma} \mathbf{b} + \mathbf{v}^{E} + \mathbf{b} \times (\nabla p_{\perp \sigma} - \mathbf{R}) / m_{\sigma} n_{\sigma} \Omega_{\sigma}$ $+ \{ (\mathbf{v}_{t||\sigma}^{2} - \mathbf{v}_{t\perp\sigma}^{2} + \mathbf{v}_{||\sigma}^{2}) / \Omega_{\sigma} \} \mathbf{b} \times \mathbf{b} \cdot \nabla \mathbf{b}$

 $\mathbf{v}^{\mathsf{E}} \sim (1+0.25\rho_{\sigma}^{2}\nabla^{2})\mathbf{E} \times \mathbf{b}/\mathbf{B} \sim \mathbf{E} \times \mathbf{b}/\mathbf{B}$ $\mathbf{b} = \mathbf{B}/\mathbf{B}, \ \Omega_{\sigma} = \mathbf{e}_{\sigma}\mathbf{B}/\mathbf{m}_{\sigma}, \ \mathbf{v}_{t\sigma} = (\mathbf{T}_{\sigma}/\mathbf{m}_{\sigma})^{1/2}$

Energy flux due to drifts:

$$\mathbf{q}_{\sigma} = 2.5 p_{\sigma} \langle \mathbf{v}_{\sigma}^{gc} \rangle_{\sigma} - \nabla \langle (2.5 p_{\sigma}^{T} \mathbf{\sigma}_{\sigma} \mathbf{b} / e_{\sigma}^{T} \mathbf{B}) \rangle$$
$$\approx 2.5 p_{\sigma}^{T} \mathbf{v}_{\sigma} + 2.5 p_{\sigma}^{T} \mathbf{v}_{\tau} \rho_{\sigma}^{T} \mathbf{b} \rangle \nabla T_{\sigma}^{T} / T_{\sigma}^{T}$$

Jet

Relative strength of drift terms

Radial E-field in SOL due to $\nabla_{\!\!\perp} T_{\!\!e}$	$E_{\perp} \sim 3 \nabla_{\perp} T_{e,t}$
Poloidal component of heat flux	$\begin{split} \textbf{q}_{\theta\sigma} &= (\textbf{B}_{\theta}/\textbf{B})\textbf{q}_{ \sigma} \\ \textbf{q}_{ \sigma} &\sim \textbf{p}_{\sigma}\textbf{L}_{ }/\tau_{ \sigma} \\ \tau_{ i} &\sim \textbf{L}_{ }/\textbf{c}_{s}, \ \tau_{ e} &\sim \textbf{L}_{ }^{2}/\chi_{ e} \end{split}$
The ratio of poloidal components: ExB	$\begin{array}{l} q_{\theta i}{}^{E}/q_{\theta i} \thicksim 3\rho_{\theta s}/\lambda_{Te} \\ q_{\theta e}{}^{E}_{/\theta e} \thicksim \nu^{*}{}_{e}\rho_{\theta s}/\lambda_{Te} \end{array}$
diamagnetic (conductive)	$\begin{array}{c} \mathbf{q}_{\theta i}^{\ \nabla T} / \mathbf{q}_{\theta i} \thicksim \pm \rho_{\theta s} / \lambda_{Ti} \\ \mathbf{q}_{\theta e}^{\ \nabla T} / \mathbf{q}_{\theta e} \thicksim \nu^{*}_{e} \rho_{\theta s} / \lambda_{Te} \end{array}$
with fwd-B power width scaling $\lambda_q \propto A(Z)B_{\phi}^{-1}q_{95}^{0.6}P_t^{-0.4}n_{e,u}^{0.25}$	$q_{\theta i}^{E}/q_{\theta i} \sim q_{\theta i}^{\nabla T}/q_{\theta i} \sim T_{i,t}^{1/2} P_{SOL}^{1/2} n_{e,u}^{-0.2}$

E

JET

E

Other SOL flow modelling approaches

Active area of research !!!

See Kirnev, Strachan, Huber, Coster, Matthews, Chankin

- Effect of carbon plume on probe M_{||} measurement
- 2) External momentum source
- 3) Poloidal variation of D \perp , $\chi \perp$ Radial pinch

 $\text{HFS} \rightarrow \text{LFS}$ for fwd-B

 $\mathsf{HFS} \gets \mathsf{LFS} \text{ for rev-B}$

No drifts

Better match to experiment

Physical basis? Not polarization.

