

Reversed Bt operation proposals

R. Maingi

Oak Ridge National Laboratory

Combined T & T and BP Meeting July 23, 2009

Proposal: measure effect of grad-B drift on P_{LH}

- Unfavorable grad-B drift direction usually increases P_{LH} by ~ 100%, so measuring P_{LH} along with edge gradients and turbulence will augment power threshold studies
- Proposal: measure P_{LH} in LSN H-modes at low and high delta to complement results from XP 909
 - Target δ =0.4, 0.8 (in LSN configuration)
 - Consider also a DN comparison to verify P_{LH} doesn't change?
 - Interpret results in collaboration with CS Chang and XGC runs
- Alternate execution idea: use RF to measure P_{LH} with power ramps as in XP941 today, instead of P_{NBI}

Three X-point radii and triangularities achieved

κ , bottom gap relatively well matched at 0.2 s, but δ_r^{sep} different P_{LH}^{NBI} lowest for $\delta_L \sim 0.4$ and comparable for bisher $\delta_{t} \sim 0.4$

Proposal: Characterize high power L-modes with Rev. B_t

- Unfavorable grad-B drift direction usually increases P_{LH} by ~ 100%, so this should increase operating space available for L-mode operation
- Recent C-Mod data shows rather good performance in rev. Bt L-modes, but they don't have enough power to see impact on ELMs and β limits
 - C-Mod shows formation of H-mode pedestal-like Te but without high density edge
- Proposal: characterize L-mode operational window, edge characteristics with an NBI and IP scan
 - Target δ =0.8 fiducial-like configuration with strong downward bias
 - High Bt important for β limit headroom?
 - Add RMP to look for density pumpout signs?

Improved L-modes in C-Mod have pedestal-like profiles

FIG. 14. (Color online) Comparison of (a) edge electron temperature and (b) electron density profiles between *L*-mode, *I*-mode, and *H*-mode plasmas. The *I*-mode temperature profile approaches *H*-mode values, while the *I*-mode density profile remains closer to *L*-mode levels.

FIG. 15. (Color online) Comparison of (a) the radial electric field and (b) the $\mathbf{E} \times \mathbf{B}$ shear profiles between an *L*-mode, *I*-mode, and EDA *H*-mode. *I*-mode radial electric field well depths and $\mathbf{E} \times \mathbf{B}$ shear rates are lower than their *H*-mode counterparts.

Proposal: Thermal transport in H-mode boundary with rev. Bt

- Power flow to outer and inner divertor observed to become more balanced with rev. Bt operation in tokamaks
- Proposal: complete scans of several quantities known to affect the divertor heat flux profile: P_{NBI}, I_P, gas puffing (as in FY2010 Joule milestone XP923) in low delta PF2L shapes run in XP942 (e.g. 135169)
 - Low δ needed to see both inner and outer strike points
 - Some high δ shots desired as well (only assess OSP)
 - Need to add some radiative divertor tries as well
- Basic modeling: simulation of data with 2-D codes (e.g. b2 /EIRENE, UEDGE, DEGAS-2) to assess how heat is transported between midplane -> X-point -> divertor
- Detailed modeling: prediction of SOL heat flux widths from turbulence models, e.g. SOLT code

