

Scrape-off layer and divertor transport and turbulence studies with reversed *B*_t

College W&M Columbia U Comp-X **General Atomics** INFL Johns Hopkins U LANL LINL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U Wisconsin**

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, CA

and the NSTX Boundary Physics Group

NSTX Reversed TF XP discussion 23 July 2009 Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Reversed TF campaign is being planned on NSTX

- Start hardware preparations on 5 August 2009
- Planning to dedicate two days to ISTPs and discharge development (6-7 August 2009)
- TF will be 4.5 kG
- Three T&T and BP TSG experiments have been discussed as leading candidates for the reversed TF campaign
 - L-H threshold studies
 - High-power L-mode studies
 - SOL and divertor characterization
- Proposed XPs will provide initial characterization on
 - NSTX machine performance with reversed TF
 - data to motivate future reversed TF and possibly I_p exp'ts
 - data to compare to large aspect ratio tokamaks (e.g., DIII-D, JET, AUG, JT-60U)

NSTX edge diagnostics set is (well?) suited for the proposed SOL and divertor studies with reversed B_t

- Diagnostic set for divertor studies:
 - IR cameras
 - Bolometers
 - Neutral pressure gauges
 - Tile Langmuir probes
 - $D\alpha$, $D\gamma$ filtered CCD arrays
 - UV-VIS spectrometer (10 divertor chords) – C II, CIII, Balmer, He profiles
 - Fast cameras
- Midplane Thomson scattering and CHERS systems

Lawrence Livermore National Laboratory

• Divertor gas injector Γ_{gas} = 20-200 Torr I / s

Expected measurable effects from the experiment

- Present B_t direction: CW from above, B x grad B toward lower X-pt
- Present I_p direction CCW from above (co-dir. w/ NBI)
- Reversed B_t direction: CCW from above, B x grad B away from lower X-pt
 - Classical drifts ion flows, carbon migration
 - Divertor heat and particle flux asymmetries
 - Divertor regimes effect on divertor T_e and n_e
 - Detachment
 - Pumping, density limits

Plan for SOL and divertor characterization

- Characterize divertor heat and particle fluxes and asymmetries in low- δ shape
 - Scan P_{NBI} as much as possible in H-mode at 0.8 MA
 - Scan I_p between 0.6 and 1.2 MA
 - Study pumping scan LITER rate (several data points)

• Characterize outer divertor heat and particle fluxes in high- δ shape

- Scan *P_{NBI}* as much as possible in H-mode at 0.8 (1.0) MA
- Scan I_p between 0.6 and 1.2 MA
- Study pumping scan LITER rate (several data points)
- Study detachment access in 1.0 MA and 1.2 MA discharges puff D₂ in lower divertor
- Study fueling w/ SGI
- Obtain "snowflake" divertor (if previously successful)