

Measurements of Heat Flux Profiles for the

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U Wisconsin**

NSTX Boundary Physics TSG meting Princeton, NJ June 1, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

FY2010 Joint Research Milestone XP

June 1, 2010

Additional data needed to fulfill FY2010 Joint Research Milestone on SOL thermal transport

- ✓Obtained, analyzed, and published slow IR camera data from several pre-li data sets:
 - wide $\mathsf{P}_{\mathsf{NBI}}$ and moderate I_{p} scans at medium $\delta{\sim}0.5$
 - Nice I_p scan, flux expansion, and narrow P_{NBI} scans at high $\delta \text{~} 0.7$
 - Main results: divertor heat flux width (mapped to midplane) independent of P_{SOL}, flux expansion, but narrows rapidly with increasing I_p
- Desired: comparable data set for post-li discharges, plus additional B_t scan, magnetic balance (δ_r^{sep}) scan, and data from scaled poloidal shape match to C-Mod
- Dedicated data with GPI to see if turbulence changes

Simplest 0-D heat flux projection based on power balance extrapolates from measured NSTX heat flux profiles

- IR thermography measures heat flux profile $q_{div}^{out}(r)$ for calculation of divertor power loading: $P_{div}^{out} = \int_{R_{min}}^{R_{max}} 2\pi R_{div}^{out} q_{div}^{out} dr$
- Define characteristic divertor heat flux scale length, $\lambda_{q,div}^{out}$:

$$\lambda_{q,div}^{out} = P_{div}^{out} / \left(2\pi R_{div,peak}^{out} q_{div,peak}^{out} \right)$$

- Assume $\lambda_{q,div}^{out}$ related* to characteristic midplane scale length through flux expansion f_{exp} : $\lambda_q^{mid} = \lambda_{q,div}^{out} / f_{exp}$ with $f_{exp} = \frac{R_{mid}B_{\theta}^{mid}}{R_{div}B_{\theta}^{div}}$
- Project NSTX-U q_{peak}^{div} : I_p=2 MA, P_{loss} =10 MW, B_t=1 T, f_{exp} =30 - For P_{loss} extrapolation, use $P_{div}^{out} = f_{div}P_{loss}$ with $f_{div} = 0.5$

$$q_{div,peak}^{out} = f_{div} P_{loss} / \left(2\pi R_{div,peak}^{out} f_{exp} \lambda_q^{mid} \right) \text{ with } \lambda_q^{mid} = f(I_p, P_{loss}, B_t, f_{exp})$$

> Determine dependence of λ_q^{mid} on external parameters (I_p, P_{loss} , B_t, flux expansion) from NSTX data (FY10 Joint Research Target)

*Loarte, JNM 1999

Peak heat flux decreases inversely with flux expansion with roughly constant λ_{α}^{mid} in NSTX

10

8

6

- λ_{a}^{div} increases with flux expansion
- λ_{α}^{mid} stays approximately constant during the scan

Heat flux width λ_q^{mid} largely independent of P_{loss} in attached plasmas in NSTX

- Peak divertor heat flux increases with P_{loss}
- Apparent change in slope near P_{loss}=4 MW in these conditions, as divertor transitions from a radiative /detached divertor to an attached divertor
- λ_q^{mid} relatively independent of P_{loss} in high heat flux regime
- All data in this talk averaged over ELMs and before lithium coatings

Gray, PSI10

Heat flux width λ_q^{mid} largely independent of P_{loss} in attached plasmas in NSTX

Heat flux width decreases with I_p in NSTX

- Combined data from dedicated I_p scans in low δ and high δ discharges
 - I_p dependence also in DIII-D, JET
 - Different P_{NBI} and f_{exp} , but previous slides shows no P_{loss} or f_{exp} effect on λ_q^{mid}
 - q_{95} , ℓ_{II} different
- Power law fit: λ_q^{mid} ~ 3 +/- 0.5 mm
 @ 2 MA
- Lodestar group making progress on simulations (Myra, PSI10) Gray,

Proposed shot plan elements in priority order

- + I_p scan from 0.7-1.3 MA (0.1 MA increments) at high δ
- + B_t scan from 0.35-0.55 T (0.05 T increments) at high δ
- + $\mathsf{P}_{\mathsf{NBI}}$ scan from 2-max (1 MW incr.) MW in H-mode at high δ
 - Highest $I_{\rm p}$ provides new dataset in region of interest, and lower $I_{\rm p}$ satisfies GPI requirement
- Scaled poloidal shape match to C-Mod and DIII-D to match v^* , κ , δ : (e.g. from XP721: $\delta \sim 0.5$, κ =1.8, large δ_r^{sep})
- δ_r^{sep} scan from 0 to (-2) cm, at high and medium δ
- >Note: High δ => R=0.4m, Low δ => R=0.7m, with *strike point control* used for each

Proposed shot plan sequencing

- Develop baseline 1.2 MA, 0.45 T (based on pre-li 128797)
 - Vary fueling +/- 100 torr with 100-200 mg Li between shots to set up target (6)
 - P_{NBI} scan: 2-max MW (1 MW increments) (8)
 - Drop I_p=0.8 MA; P_{NBI} scan: 2-max MW (1 MW incr.) (10)
- I_p scan at 3 or 4 MW NBI: 0.8 MA, 1.3 MA, 0.7 MA, 1.0 MA, 1.1 MA, 0.9 MA (18)
- B_t scan from 0.35-0.55 T (0.05 T increments) 0.8 MA, high δ
 (8)
- Scaled poloidal shape match to C-Mod and DIII-D to match v^* , κ , δ : (e.g. from XP721: $\delta \sim 0.5$, κ =1.8, large δ_r^{sep}) (6)
- δ_r^{sep} scan: -6mm, -3mm, 0mm, -10mm, -20 mm, at high δ and repeated for medium δ (20)

FY2010 Joint Research Milestone: Thermal Transport in the Scrape-off Layer

- Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape
 -off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER.
- Divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality, beta, parallel heat flux, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

