

Watching ELMs disappear with optimum turbulence diagnosis

College W&M Colorado Sch Mines Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

OO II VI

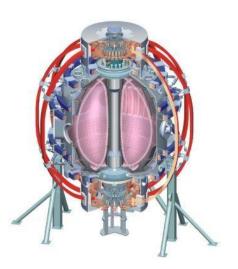
UCLA

UCSD

U Colorado

U Illinois

U Maryland


U Rochester

U Washington

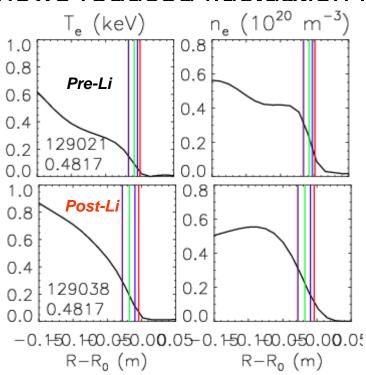
U Wisconsin

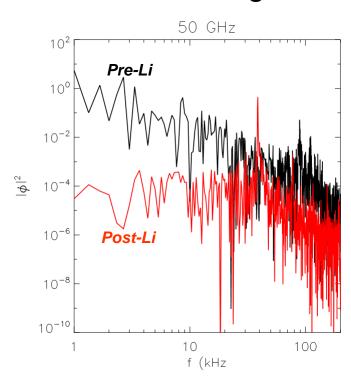
BP TSG Group Review Sep 14, 2010

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U Quebec**

Culham Sci Ctr

New XP requested in support of Canik's APS invited talk


- "Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium Coated PFCs in NSTX"
- Builds on Rajesh's talk from last year on ELM suppression with lithium (same set of shots)
- Measured edge profile changes with lithium
 - Inward shift and relaxation of pedestal pressure profile, primarily due to density profile change
 - Leads to suppression of ELMs consistent with theory
- 2D interpretive modeling of pre- to post-lithium transition
 - Uses SOLPS with transport, recycling coefficients adjusted to match experiment in: edge kinetic profiles, divertor IR, divertor Dalpha
 - Shows changes to edge profiles due to combined transport and recycling changes (reduced R alone not enough, barrier widens)
- Turbulence measurements



What we have for edge turbulence measurement

- What we have: reflectometer data using UCLA fixed frequency system
 - Also ORNL system, but this is for SOL; we're interested in pedestal
- Shows reduced fluctuation level with lithium coatings

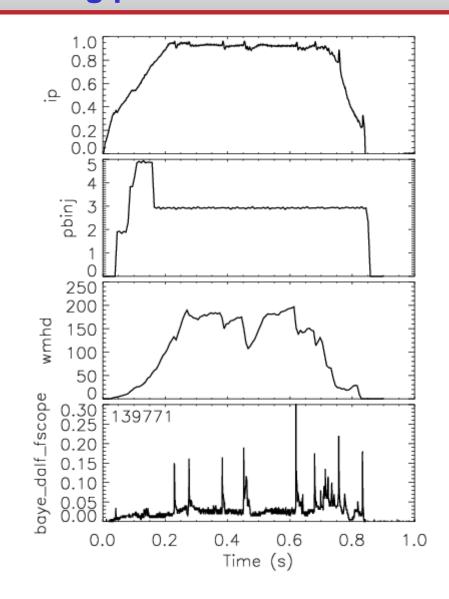
What we would like to do

- Repeat to the extent possible the pre- to post-lithium experiment
 - Since lithium has been used already, here we'll aim for ELMy (using little lithium) vs. ELM-free (lots of Li)
- Goal is to get as much turbulence data as possible to correlate with pedestal structure changes as Li is applied and plasma goes ELM-free
- Primary diagnostics:
 - Reflectometer data with swept frequency system, addl fixed channels
 - High-k
 - Aimed for psiN~0.8-0.9; "top" of pedestal without lithium, likely to be most significant change in T&T properties
 - BES

Run plan

- Plasma discharge sequence largely the same as 129015-038 from 2008: low delta shape, add lithium until no ELMs
- Create ELMy discharge (4 shots)
 - Reload 129019, adjust drsep etc to recover ELMs
 - If ELMs can't be produced, go to 138047/139771 (recent ELMy shots)
 - Three discharges needed, with high-k moved in each.
 - Bottom of pedestal: R~144 cm
 - Middle of pedestal: R ~ 141 cm
 - Top of pedestal: R ~ 138 cm
- Begin adding lithium (5 shots)
 - Ideally we can get several points in between the ELMy and ELM-free ends (aiming for ~5 shots)
 - Evaporate at 100-150 mg per shot, aim for 5 shots with intermediate
 ELM conditions, fixed input power
 - Leave fluctuation diagnostics alone

Run plan


- Create ELM-free discharge (3 shots)
 - End point of lithium thickness scan above
 - Likely need to reduce PNBI to avoid beta limit
 - Scan high-k position again
- Backup: measure pedestal structure during current ramps
 - Pedestal structure and ELM stability tightly coupled
 - With lithium, j_{ped} reduced outside ψ_N~.95, shifts inward
 - Is pedestal width increase due to lithium directly, or a byproduct of the ELM stability change caused by avoiding peeling boundary?
 - ELMy discharge: ramp Ip down to reduced j_{ped} (stabilize ELMs?)
 - ELM-free: ramp Ip up to increase j_{ped} (destabilize)
- Key diagnostics
 - Profiles (CHERS, TS)
 - Turbulence diagnostics: High-k, BES, reflectometers
 - Only need the edge BES channels, dual LiTERs ok?

ELMy discharges have been produced recently that can serve as a reference starting point

- ELMy discharges produced during Diallo's pedestal height XP
- Heavy evaporation then performed in preparation for second round of LLD characterization
 - Difficulty producing ELMs
- ELMy discharges recovered towards end of LLD char. (no LITER, only plasma heating of LLD)
 - High ROSP shape
 - Both Type-V and large ELMs present

