

Supported by Sciences

XP1030: ELM stability modification using 3D <u>fiel</u>ds from a single row off-midplane coils

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia^{1*}, J. Canik¹, R. Maingi¹

¹ Oak Ridge National Laboratory, Oak Ridge, TN

* Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

Team Review September 24, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Strong non-resonant braking and modification (but not suppression) of ELMs using 3D perturbations on NSTX

applied resonant magnetic perturbations, San Diego, CA Aug, 2008

@NSTX

XP1030 Team Review

DIII-D experiments demonstrated ELM suppression using a single row of off-midplane coils

- ELM suppression using internal, offmidplane coils
 - Successful with single row and two rows
 - Not successful with external midplane coil
 - Amplitude of perturbation chosen so resonant amplitude similar
- Attributed to a wider island overlap region
 - Large aperture →
 increased low-m
 coupling

M.E. Fenstermacher, T.E. Evans, T.H. Osborne, M.J. Schaffer, J.S. Degrassie, P. Gohil, R.A. Moyer, Nucl. Fusion, **48**, 122001 (2008)

XP1030 Team Review

Off-midplane fields reduce non-resonant components in the core

n = 3 field

- Shift plasma down 20 ۲ cm or more
 - Gives off-midplane perturbation
- Improves resonant ۲ coupling
 - Reduced poloidal extent of perturbation
 - Reduces nonresonant amplitude inside core (reduced braking)

Test ELM suppression using 3D off-midplane fields on NSTX

- 1/2 day experiment
 - Develop ELMing discharge with $-\Delta z > 20$ cm
 - Apply static n = 3 perturbation and increase amplitude over a series of discharges
 - If time, scan q_{95}
- Interest in experiment
 - ITER and others: Requirements for external ELM control coils
 - 3D physics: Theory of ELM stability modification
 - Edge-localized rotation braking profile
 - Discharges explore off-midplane NBI current drive
 - SXR imaging near upper X-point

Run plan – develop target

Run plan – Attempt ELM suppression

- Once shape is established...
 - Establish type-I ELMs using liter rate and fueling
- Apply static n=3 field
 - Increase amplitude from shot-to-shot
 - End when ELMs disappear, shot disrupts quickly from rotation damping or reach SPA limit
- If time, scan q₉₅
 - Is there an optimum window for this shape?

Use tangential SXR camera to image edge structures

- 3D fields predicted to open up edge islands
 - High-m island chains could be resolved using tangential SXR imaging
 - Islands largest near X-points
 - Shift plasma brings upper X-point into field of view of diagnostic
 - Diagnostic supports 2 cm spatial resolution

Experiments on NSTX showed a modification, but not suppression, of ELMs using 3D perturbations

<u>n = 2 DC field vs. no field</u>

 D_{α} (arb) D_{α} (arb) 2.0 2.0 1.0 Ω 0 Plasma stored energy (kJ) Plasma stored energy (kJ) 127541 127532 140 140 127543 127531 120 120 100 100 80 80 RMP coil current (kA) RMP coil current (A) 400 2 200 -2 0 0.24 0.26 0.28 0.30 0.32 0.24 0.22 0.26 0.28 0.30 0.32 seconds seconds

S.A. Sabbagh et. al., *Workshop: Modeling of plasma effects of applied resonant magnetic perturbations*, San Diego, CA Aug, 2008

n = 2 AC field, 70 Hz vs. no field

10

Chirikov profile

ONSTX

XP1030 Team Review

q profiles

XP1030 Team Review

12