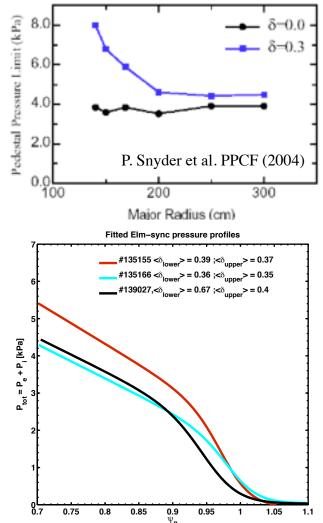


Supported by

Office of

Science

Effects of the Triangularity on the Pedestal Structure at fixed X-point height in ELMy Discharges

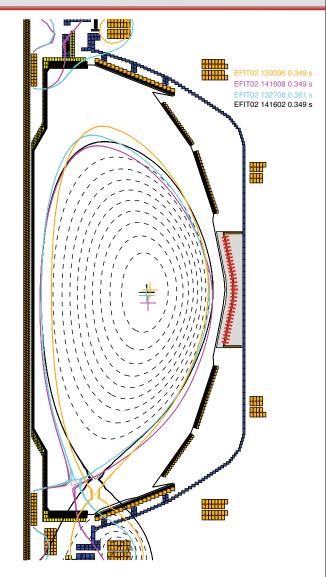

A. Diallo, A. Sontag, R. Maingi, S. Gerhart, and E. Kolemen

XP Group Review

Thursday, October 21, 2010

Pedestal Structure and Stability are Tightly Coupled through the Plasma Shape

- XP 1044: Experiments of pedestal structure scaling have been performed to show:
 - normalized poloidal beta scales with current consistent ITER98 scaling
 - no clear scaling of the pedestal height with Bt.
 - pedestal height does not ALWAYS saturate before the ELM crash
 - what is the effect of plasma shaping on the pedestal structure?
- The effect of plasma shaping is well known to be a key ingredient in MHD stability. Its role in setting the pedestal width and height has yet to be quantified.
 - In large aspect ratio tokamak, the pedestal pressure limit increases with triangularity
 - Data from XP942 confirms the increase of the pedestal height with average triangularity
 - Extend to XP942 to add a crucial component the Xpoint control.

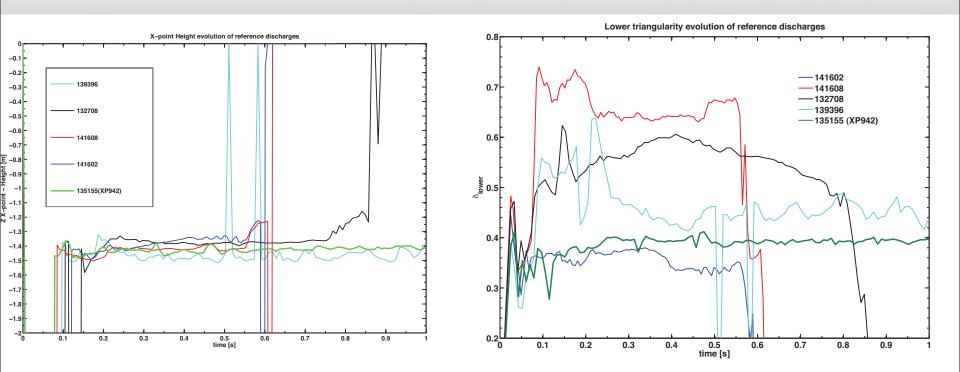

NSTX Boundary Physics TSG Review

XP Goal: Scan both bottom and average triangularity and quantify their effects on the pedestal structure

- This XP targets FY 2011 Joint research Milestone on pedestal physics
- Perform systematic scan of the bottom triangularity at fixed X-point height to quantify the dependence of the triangularity on the pedestal structure

• Questions this XP might address:

- How does the pedestal height and width depend on the bottom triangularity?
- Is the pedestal buildup during an ELM cycle depending on the shaping?
- Which of the two knobs (bottom or average triangularity) has the dominant effect on the pedestal structure?
- Can we determine the range of values in triangularity enabling to transition from the peeling to peelingballooning dominated drive in the stability curve?
- What are the fluctuation characteristics during an ELM cycle for high and low triangularity?



NSTX Boundary Physics TSG Review

2 Sessions-Run Plan (in order of priority)

•	Session 1: Shape development	[1/2 day]
	 Reference 135155 discharge at low triangularity (0.3-0.4) 	[5 shots]
	• Ip = 800 kA, Bt = 4.5kG	
	 Biased down: drsep = -0.5 cm 	
	 Keep top triangularity between 0.3 and 0.5 	
	 Include the X-point height and strike point controls 	
	 Establish a high triangularity discharge(0.7-0.8) 	[5 shots]
	 Keep the same top triangularity as above 	
	 Establish a medium bottom triangularity(0.5-0.6) 	[5 shots]
	 If time permits, vary the top and bottom triangularity independent the average triangularity constant 	ly keeping [3 shots]
•	Session 2: Pedestal structure documentation	[1/2 day]
	 Note that, once the discharges are established, we might need to tweak the gas and beam timings to obtain regular ELMy discharges. 	
	 For each shape by stepping the beam power from 6MW to 4 MW 	/ 2x3 shots
	 Document the effect of toroidal velocity on the pedestal structure low/gentle levels of n=3 braking (300A, 600A,900A). 	by applying 3x3 shots

Target Discharges X-point height and Lower Triangularity

Shot 135155 shows fairly constant X-point height and lower triangularity