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Outline of the Talk

* The TCV Tokamak

* Magnetic in-situ Calibration

* Ohmic and Assisted Plasma Start-up
* Doublet Shaped Plasmas

e Snowflake Divertor
» Snowflake divertor on TCV
» Magnetic properties of the TCV snowflake

» Snowflake divertor in the H-mode regime
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The TCV Tokamak
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TCV - Tokamak a Configuration Variable
Mission

Contribute to
physics basis for

¢ |ITER scenarios
e DEMO design

* Tokamak concept
Improvement
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Unique TCV Features

Flexible plasma shapes

@ D2

o

O TCV Parameters
® R =0.88m; a=0.25m
® Br<1.5T; Ip < 1.2MA
® 0.9 < elongation Kk < 2.8
® -0.8 < triangularity 6 < 0.9
® Internal fast n=0 coils
(as in ITER)
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Unique TCV Features

Flexible plasma shapes
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Unique TCV Features

Electron Cyclotron Systems
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® 2"d harmonic X2 (82.7GHz)
6 x 0.5MW - 2s

Side launch ECH, ECCD
Ncut-off = 4%x101°mM3

® 3"d harmonic X3 (118GHz2)
3 x 0.5MW - 2s
Top launch ECH
Ncut-off = 102°mM3
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Magnetics in-situ Calibration
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Magnetics in-situ Calibration

Motivation
* Axisymmetric errors (n = 0):
» Plasma shape deformation

» Wrong plasma position/strike points location

» Caused by:
-Errors in the radius and vertical position of the PF coils
-Errors in the measured PF coll currents

* Asymmetric errors (n > 0):
» Creation of magnetic islands
» Locked modes

» Caused by:
-Misalignment/deformation of the PF coils

Goal of the calibration
* Find the real positions and gains of the TCV magnetic system
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The TCV Magnetic System
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» 16 PF Coils (E and F)

» 7 ohmic coils (A, B, C and D)
» 3 toroidal field connections (T)
» 4 x 38 magnetic field probes

» 61 flux loops

» 24 saddle loops
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The Calibration Technique

* Each coll is separately powered
* All magnetic signals are acquired and compared to expected values

Ab, = b,-B I
AV, = v,.-—-M I,

* The discrepancies are associated to calibration errors (660 parameters)

* The correction parameters are determined by minimizing a cost function

* The error on the PF colils position is of the order of ~1 mm
* The error on the n = 0 poloidal field is ~1 mT
* The n =1 error field is of ~0.1 mT

F.Piras, Fusion Eng. Des. 2010
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Ohmic and Assisted Plasma
Start-up

12 Snowflake Divertor Experiments on TCV



Ohmic Plasma Start-up

#24004 #38053 #38071

e Start-up magnetic field reconstruction

* Plasma evolution during early ramp-
up phase

e Statistical analysis of breakdown

* Modeling of the ohmic start-up

mag. rec. camera

F.Piras, to be published
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Assisted ECH-X2 Plasma Start-up

* Assisted plasma start-up scenario

A Ip
Breakdown
l @,
A Vloop ~0
/ (bl )
AECH Power
(CZ t
-15ms +15ms

* Power injected from the LFS (central port)

F.Piras, to be published
14 Snowflake Divertor Experiments on TCV




Assisted ECH-X2 Plasma Start-up

Scan of the main ECH parameters

* ECH power scan (better high power)

3

F.Piras, to be published

<<
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Assisted ECH-X2 Plasma Start-up

Scan of the main ECH parameters
* ECH toroidal angle scan (best 90 deg)
3| Ip[kA]
Bp o g A A
CO- 1nJect10n (76 deg)
: ent-injection (104 deg)
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t[ms] F.Piras, to be published

<<
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Assisted ECH-X2 Plasma Start-up

* ECH polarization scan (better X pol.)

Scan of the main ECH parameters

SplkA} - S

5_

0
tfms]|

5

F.Piras, to be published
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Doublet Shaped Plasmas
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Doublet Shaped Plasma Concept
Why doublets

* Intrinsic zone of negative magnetic shear

* | ower vertical instability growth rate

* Possible advantages related to radioactive mantle
* Net current present at the plasma pedestal

* Doublet plasmas gives the possibility to study H-mode physics and
magnetic reconnection

A /
mantle
¢ IP /
> SOL
SOL
>
DIVERTOR K

F.Piras, to be published
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Possible Doublet Configurations

Changing the mantle thickness, symmetry and edge properties

mantle

N

(a) (b) (c) (a)

F.Piras, to be published
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Doublet Shaped Plasma Scenario

* | ateral constriction of highly elongated plasma

107 kA

* Predicted maximum growth rate beyond ideal stability limit

F.Piras, to be published

21 Snowflake Divertor Experiments on TCV



Doublet Shaped Plasma Scenario

* Hour-glass scenario

1000 KA

. -“F

(o)

* For peaked profiles the highly asymmetric doublets (e) does not exist
* _ow MHD stabillity

F.Piras, to be published
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Doublet Shaped Plasma Scenario

* Merging of two droplet-shaped plasmas

e The two breakdowns have to be simultaneous

F.Piras, to be published
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The Double Breakdown Problem

¢ | ow chance to have a double ohmic breakdown

¢ Double breakdown assisted with ECH-X2
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F.Piras, to be published
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Snowflake Divertor
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The Standard Divertor Configuration

Heat flux on the tokamak PFCs is a primary challenge of
magnetic fusion research

* |n diverted plasmas:
» Magnetic X-point present (Bp = 0)

* Several strategies reduce the divertor heat loads:
» Tile tilting
» High flux expansion at strike points

» Large radiated power fraction X-point

divertor

Divertor lifetime remains a crucial issue for tokamaks

* New solutions proposed to reduce the power heat loads:
» The Snowflake Divertor [D.D.Ryutov, 2007]
» The Super-X Divertor [P.M.Valanju, 2009]
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The Snowflake Divertor Concept

X-point replaced by second order null
*Bp=0AND VBp =0
* 4 divertor legs
* Minimum two divertor coils necessary
® Separatrix angle at the X-point of 60° instead of 90°

SF+

e The SF features:

» Larger flux expansion in the X-point region
» Longer connection length in the SOL

» Higher magnetic shear close to the separatrix F.Piras, PPCF 2010
V.Soukhanovskii, APS 2010

<<
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Creating a Showflake on TCV
Snowflake Divertor demonstrated for the first time in TCV

XD:'Z
C2
X

© B2

#3924 21,0005 e

| E8X UL X

* Open divertor can be freely configured
» 16 independently powered coils
» Vessel covered with graphite tiles

e Several PF coils used as SF divertor coils

F.Piras, PPCF 2009
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Viewing a Snowflake on TCV

All three SF configurations have been successfully established
and controlled

» The tangential visible camera confirms the
magnetic configurations

» O parametrizes the proximity to an ideal
snowflake configuration (SF)

SF+ SF-

o
4 F.Piras, PPCF 2009
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Magnetic Structure of TCV Snowflake
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Magnetic Structure of TCV Snowflake
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Magnetic Structure of TCV Snowflake
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Exploring H-mode Snowflakes

Motivation:

* The H-mode and ELMs are important in present and future tokamaks

* Do the different SF magnetic properties affect the H-mode?

Experiments:

* Can a SF divertor reach an ELMy H-mode?

* How do the ELM dynamics compare with a SN H-mode?

e Can we channel ELM power onto the additional strike points?
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Tuning the Configurations
Comparison between SN and SF+ with similar plasma shape

#39874 — 07583 beam #39874 — 1.0 beam

" X3 beam W - N
K ] a

S T Plasma properties | B
i : » Ip = 300kA ii
WM » BxVB ion-drift towards X-point | :

| e Additional heating B\
» 1MW ECH-X3 Z
» 0.5-1MW ECH-X2

SN 0=270% SF+ SN SF+ 0=55%
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Accessing the H-mode
Comparison SN and SF+

1.5

Pin[MW] . @SN
O SF+
1+
LH power
5 Ohmic threshold
05} O @9---] scaling
LH power _ _ -~ -
scaling oo O
0 2 4 6 3

n_ x10°[m>]

® Scan Pin to identify H-mode power threshold
» Low density: a fraction of Pin from ECH
» High density: only ohmic power (ECH cut-off)

Unchanged power threshold for Ohmic and ECH H-modes
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Type I ELMy H-mode
ELMy H-mode for SN and SF+ within the same discharge

00 9

H, [au.] ' ' ' i i i "$39874

'S A b ' J L ' (a)
T [keV] o ;\,'.\

¢ . ; + + + ' + + (®)
n_ 10" [m-]

+ : t t : : t t - ©)
P[MW] ]

(d)

() A A A 'l L
0 02 04 06 08 1 12 14 16 18 2

time|s]

* SF+ established from SN moving the
second X-point toward the SN X-point

e After the transition:
» Te and confinement increase by ~15%

» The ELM frequency is lower

» Ha spikes and integrated Ha across each
ELM increase by ~30%
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2
0

0.5

H [a.u.]

Type I ELMy H-mode
ELMy H-mode for SN and SF+ within the same discharge

00 9

* SF+ established from SN moving the
second X-point toward the SN X-point

e After the transition:

T [keV]

L » Te and confinement increase by ~15%

» The ELM frequency is lower

- )
» Ha spikes and integrated Ha across each
ELM increase by ~30%

VAL

37 Snowflake Divertor Experiments on TCV



Snowflake Reduces ELM Frequency

ELM Frequency vs Input Power
AW, W,
0 vy M2l + -t |07
300 + - |0.15 SN | SF
e -
L 1 b AWELm |.6k] | 2.3k
200F - “ SN { BH0.1
AWEeLm /Wp 10.6%| 13.7%
100F  QF+ —=———=- " 1 0.05
= (=== | VELM X AWELM/Pin| 30% [12.4%
0 - - - - - - 0
1.2 1.4 1.6 1.8 2 2.2
Pin [MW]
e Scan ECH-X2 input power keeping ECH-X3 constant
* dveLm/dPin > 0 for both configurations — type | ELMs
* SF+ has 2-3 times lower verLm
o AWELm/Wp only 20-30% higher in SF+

* verm does not change with X2/X3 deposition, k, SF+—SN
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Similar Pedestal Profiles
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Enhanced Pedestal Stability
Ideal MHD pedestal stability computed with the KINX code

J ||/<J> lown | unstable o
1! external kink region ,mld'hlghl? ]
ink-ballooning

0.5¢ stable
region SN
n— oo
0 | | | | ballponing |
0 1 2 3

* The SF+ shows: O
» Larger second stability region, i.e. enhanced kink-ballooning stability
» Better stability of ideal ballooning modes (n—)
» Lower low n (external kink) stability limits
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Enhanced Pedestal Stability
Ideal MHD pedestal stability computed with the KINX code

J”/<J>I low n | unstable -
region Mid-highn

1t external kink , o
ink-ballooning

0.5} stable \
region SN | Experimental
n—>0co points
0 | | | | ballponing |
0 1 2 3

e The SF+ shows: o

» Larger second stability region, i.e. enhanced kink-ballooning stability
» Better stability of ideal ballooning modes (n—)
» Lower low n (external kink) stability limits

S.Medvedev P4.145
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Strike Point Power Sharing

Vertical infrared camera profiles
* Coherently averaged ELM profiles
#39241 |
600 1 o
=g
Q1
400 | o
200 : N
Of‘ﬁ- (.) 1 2
R-R_ [cm] 8 ﬁ
* 15% of AWEeLm reaches the bottom strike point I__,;ﬂ”({(
» confirmed with thermocouples on divertor tiles thermocouples
* Cross-field transport from the null region explains the measured profiles
* No significant profile broadening during ELMs
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Conclusions (Snhowflake Divertor)

* The snowflake divertor has been established and controlled on TCV with:
» Higher flux expansion, connection length and magnetic shear

* An ELMy Type | H-mode was established, showing:
» Similar H-mode power threshold to single-null plasmas

» ELM frequency reduced by 2-3, while energy lost per ELM increased by 20-30%
» Higher plasma temperature and better confinement (~15%)
» Similar pedestal profiles

* 15% of the ELM energy reaches one of the additional strike points

* The pedestal stability analysis suggests enhanced kink-ballooning stability

* Future work will focus on the strike point power sharing
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