

Snowflake Divertor Experiments on TCV

Francesco PIRAS

S.Coda, B.P.Duval, B.Labit, J.Marki, S.Yu.Medvedev, J-M.Moret, A.Pitzschke, O.Sauter and the TCV team

Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne, Switzerland

presented at Princeton Plasma Physics Laboratory

http://crpp.epfl.ch/~piras francesco.piras@epfl.ch

November 19, 2010

CRPF

Outline of the Talk

- The TCV Tokamak
- Magnetic in-situ Calibration
- Ohmic and Assisted Plasma Start-up
- Doublet Shaped Plasmas
- Snowflake Divertor
 - Snowflake divertor on TCV
 - Magnetic properties of the TCV snowflake
 - Snowflake divertor in the H-mode regime

The TCV Tokamak

TCV - Tokamak à Configuration Variable Mission

Contribute to physics basis for

- ITER scenarios
- DEMO design
- Tokamak concept improvement

CRPF

Unique TCV Features

Flexible plasma shapes

- **O TCV Parameters**
- R = 0.88m; a = 0.25m
- $B_T \le 1.5T$; $I_P \le 1.2MA$
- 0.9 \leq elongation $\kappa \leq$ 2.8
- -0.8 \leq triangularity $\delta \leq$ 0.9
- Internal_fast n=0 coils (as in ITER)

Unique TCV Features

Flexible plasma shapes

Highest fully ECCD

driven current

lp=210kA

Doublet shape

lp=115kA

#11368 - 0.65s

Highest current Ip=1.06MA #36151 - 0.457s

6 Snowflake Divertor Experiments on TCV

 \times

Pear shape

Ip=360kA

CRPP

Unique TCV Features

Electron Cyclotron Systems

CRPP

Magnetics in-situ Calibration

Magnetics in-situ Calibration

Motivation

- Axisymmetric errors (n = 0):
 - Plasma shape deformation
 - Wrong plasma position/strike points location
 - Caused by:
 - -Errors in the radius and vertical position of the PF coils
 - -Errors in the measured PF coil currents
- Asymmetric errors (n > 0):
 - Creation of magnetic islands
 - Locked modes
 - Caused by:
 - -Misalignment/deformation of the PF coils

Goal of the calibration

• Find the real positions and gains of the TCV magnetic system

The TCV Magnetic System

- ▶ 16 PF Coils (E and F)
- 7 ohmic coils (A, B, C and D)
- 3 toroidal field connections (T)
- 4 x 38 magnetic field probes
- ▶ 61 flux loops
- 24 saddle loops

The Calibration Technique

- Each coil is separately powered
- All magnetic signals are acquired and compared to expected values

$$egin{array}{rcl} \Delta \Psi_f &=& \Psi_f - \underline{\mathrm{M}}_{fc} \mathbf{I_c} \ \Delta \mathbf{b}_m &=& \mathbf{b}_m - \underline{\mathrm{B}}_{mc} \mathbf{I_c} \ \Delta \Psi_s &=& \Psi_s - \underline{\mathrm{M}}_{sc} \mathbf{I_c} \end{array}$$

- The discrepancies are associated to calibration errors (660 parameters)
- The correction parameters are determined by minimizing a cost function

- \bullet The error on the PF coils position is of the order of ~1 mm
- The error on the n = 0 poloidal field is ~1 mT
- The n = 1 error field is of \sim 0.1 mT

F.Piras, Fusion Eng. Des. 2010

Ohmic and Assisted Plasma Start-up

Ohmic Plasma Start-up

- Start-up magnetic field reconstruction
- Plasma evolution during early rampup phase
- Statistical analysis of breakdown
- Modeling of the ohmic start-up

camera

 $P_{i,j} = \int l(R_{i,j}(t), Z_{i,j}(t)) dt$

F.Piras, to be published

CRPP

mag. rec.

• Assisted plasma start-up scenario

• Power injected from the LFS (central port)

F.Piras, to be published

14 Snowflake Divertor Experiments on TCV

Scan of the main ECH parameters

• ECH power scan (better high power)

15 Snowflake Divertor Experiments on TCV

Scan of the main ECH parameters

• ECH toroidal angle scan (best 90 deg)

16 Snowflake Divertor Experiments on TCV

Scan of the main ECH parameters

• ECH polarization scan (better X pol.)

17 Snowflake Divertor Experiments on TCV

Doublet Shaped Plasmas

Doublet Shaped Plasma Concept

Why doublets

- Intrinsic zone of negative magnetic shear
- Lower vertical instability growth rate
- Possible advantages related to radioactive mantle
- Net current present at the plasma pedestal
- Doublet plasmas gives the possibility to study H-mode physics and magnetic reconnection

Possible Doublet Configurations

F.Piras, to be published

CRPF

Doublet Shaped Plasma Scenario

• Lateral constriction of highly elongated plasma

• Predicted maximum growth rate beyond ideal stability limit

F.Piras, to be published

Doublet Shaped Plasma Scenario

• Hour-glass scenario

• For peaked profiles the highly asymmetric doublets (e) does not exist

Low MHD stability

F.Piras, to be published

Doublet Shaped Plasma Scenario

• The two breakdowns have to be simultaneous

CRPP

23 Snowflake Divertor Experiments on TCV

F.Piras, to be published

The Double Breakdown Problem

- Low chance to have a double ohmic breakdown
- Double breakdown assisted with ECH-X2

Snowflake Divertor

The Standard Divertor Configuration

Heat flux on the tokamak PFCs is a primary challenge of magnetic fusion research

- In diverted plasmas:
 - Magnetic X-point present (B_P = 0)
- Several strategies reduce the divertor heat loads:
 - Tile tilting
 - High flux expansion at strike points
 - Large radiated power fraction

Divertor lifetime remains a crucial issue for tokamaks

- New solutions proposed to reduce the power heat loads:
 - The Snowflake Divertor [D.D.Ryutov, 2007]
 - The Super-X Divertor [P.M.Valanju, 2009]

The Snowflake Divertor Concept

X-point replaced by second order null

- $B_P = 0$ AND $\nabla B_P = 0$
- 4 divertor legs
- Minimum two divertor coils necessary
- Separatrix angle at the X-point of 60° instead of 90°

- The SF features:
 - Larger flux expansion in the X-point region
 - Longer connection length in the SOL
 - Higher magnetic shear close to the separatrix

F.Piras, PPCF 2010 V.Soukhanovskii, APS 2010

Creating a Snowflake on TCV

Snowflake Divertor demonstrated for the first time in TCV

- Open divertor can be freely configured
 - 16 independently powered coils
 - Vessel covered with graphite tiles

Several PF coils used as SF divertor coils

Viewing a Snowflake on TCV

All three SF configurations have been successfully established and controlled

- The tangential visible camera confirms the magnetic configurations
- σ parametrizes the proximity to an ideal snowflake configuration (SF)

29 Snowflake Divertor Experiments on TCV

Magnetic Structure of TCV Snowflake

Magnetic Structure of TCV Snowflake

Magnetic Structure of TCV Snowflake

Exploring H-mode Snowflakes

Motivation:

- The H-mode and ELMs are important in present and future tokamaks
- Do the different SF magnetic properties affect the H-mode?

Experiments:

- Can a SF divertor reach an ELMy H-mode?
- How do the ELM dynamics compare with a SN H-mode?
- Can we channel ELM power onto the additional strike points?

Tuning the Configurations

Comparison between SN and SF+ with similar plasma shape

Accessing the H-mode

Comparison SN and SF+

- Scan P_{in} to identify H-mode power threshold
 - Low density: a fraction of Pin from ECH
 - High density: only ohmic power (ECH cut-off)

Unchanged power threshold for Ohmic and ECH H-modes

Type I ELMy H-mode

ELMy H-mode for SN and SF+ within the same discharge

- SF+ established from SN moving the second X-point toward the SN X-point
- After the transition:
 - ► T_e and confinement increase by ~15%
 - The ELM frequency is lower
 - Hα spikes and integrated Hα across each ELM increase by ~30%

Type I ELMy H-mode

ELMy H-mode for SN and SF+ within the same discharge

- SF+ established from SN moving the second X-point toward the SN X-point
- After the transition:
 - T_e and confinement increase by ~15%
 - The ELM frequency is lower
 - H α spikes and integrated H α across each ELM increase by ~30%

Snowflake Reduces ELM Frequency

ELM Frequency vs Input Power

- Scan ECH-X2 input power keeping ECH-X3 constant
- $dv_{ELM}/dPin > 0$ for both configurations \rightarrow type I ELMs
- SF+ has 2-3 times lower ν_{ELM}
- $\Delta W_{ELM}/W_P$ only 20-30% higher in SF+
- v_{ELM} does not change with X2/X3 deposition, κ , SF+ \rightarrow SN

Similar Pedestal Profiles

Temperature and density profiles

³⁹ Snowflake Divertor Experiments on TCV

Enhanced Pedestal Stability

Ideal MHD pedestal stability computed with the KINX code

- The SF+ shows:
 - Larger second stability region, i.e. enhanced kink-ballooning stability
 - Better stability of ideal ballooning modes $(n \rightarrow \infty)$
 - Lower low n (external kink) stability limits

Enhanced Pedestal Stability

Ideal MHD pedestal stability computed with the KINX code

- The SF+ shows:
 - Larger second stability region, i.e. enhanced kink-ballooning stability
 - Better stability of ideal ballooning modes $(n \rightarrow \infty)$
 - Lower low n (external kink) stability limits

Conclusions (Snowflake Divertor)

- The snowflake divertor has been established and controlled on TCV with:
 Higher flux expansion, connection length and magnetic shear
- An ELMy Type I H-mode was established, showing:
 - Similar H-mode power threshold to single-null plasmas
 - ▶ ELM frequency reduced by 2-3, while energy lost per ELM increased by 20-30%
 - Higher plasma temperature and better confinement (~15%)
 - Similar pedestal profiles
- 15% of the ELM energy reaches one of the additional strike points
- The pedestal stability analysis suggests enhanced kink-ballooning stability
- Future work will focus on the strike point power sharing

velm vs X2/X3 absorption, κ

- υ_{ELM} does not change with X3 deposition location
- Relatively small variation of υ_{ELM} with κ

44 Snowflake Divertor Experiments on TCV

CRPP