Effects of Triangularity and B_{φ} on Pedestal Structure in ELMy Discharges

A. Diallo, R. Maingi, A. Sontag,

S. Gerhart, E. Kolemen, R. Bell,
B. LeBlanc, M. Podestà, et al.

> Need for Further Understanding of the Pedestal Structure Evolution to Project for Future Devices through the Testing of Pedestal Models

- Higher R/a tokamaks have shown the pedestal height increases with triangularity and I_{p} (not shown here)
- Consistent with ELITE modeling
- In NSTX, we show that the pedestal height increases with δ
- Variability in pedestal height can be attributed to ELM frequency irregularity.
- Pedestal width has shown large excursion consistent with scattered pedestal height.

Goal: Complete XP1074 scan of the bottom triangularity δ and quantify their effects on the pedestal width

- This XP targets FY 2011 Joint Research Milestone on the pedestal structure
- Complete systematic scan of the bottom triangularity at fixed Xpoint height to quantify the dependence of the triangularity on the pedestal structure with additional MPTS channels.
- Obtain a "clean" B_{φ} scaling of the pedestal structure
- Questions this XP might address:
- How does the pedestal width depend on the bottom triangularity?
- Is the pedestal buildup during an ELM cycle depending on the shaping?
- Which of the two knobs (bottom or average triangularity) has the dominant effect on the pedestal structure? (if time permits)
- Can we determine the range of values in triangularity enabling to transition from the peeling to peeling-ballooning dominated drive in the stability curve?
- What are the fluctuation characteristics during an ELM cycle for high and low triangularity?
- Quantify the scaling of the pedestal structure with B_{φ} and project to NSTX-U
- Supplement the NSTX pedestal database for modelers.

Example of Target Discharges

Irregularity of ELM frequency makes the ELM syncing approximate

Drsep is a reliable knob to achieve constant ELM frequency during the discharge

- Scan was performed at 900 kA
- Lithium deposited > 100 mg
- ELM-free to ELMy regime
- Target drsep > -5 mm to generate ELMy discharges

2 Session-Run Plan (in order of priority)

- Session 1: Effect of δ on pedestal structure

1. Aim: Improve ELM reproducibility during the discharge
2. Reload 142433 discharge at high triangularity ($0.7-0.8$)
[4 shots]

- $\quad \mathrm{Ip}=0.8 \mathrm{MA}, \mathrm{Bt}=4.5 \mathrm{kG}$
- Biased down: drsep = -5 mm
- Keep top triangularity between 0.3 and 0.5
- Include the X -point height and strike point controls
- Lithium @ 50 mg
- Vary drsep to [-10;-15; -20] mm to insure reproducibility of the ELM frequency

3. Reload 142427 discharge (0.3-0.4)

- Keep the same top triangularity as above
- Vary drsep to [-10;-15;-20] mm to insure reproducibility of the ELM frequency

4. Reload 142426 (0.5-0.6)

- Vary drsep to $[-10 ;-15 ;-20] \mathrm{mm}$ to insure reproducibility of the ELM frequency

5. Decision point:

- If ELM frequencies are not reproducible enough !
- Increase Lithium to 150 mg
- Increase Drsep to -20 mm to obtain ELM frequency < 100 Hz and step from(2) - (4)

6. If time permits (??), vary the top and bottom triangularity independently keeping the average triangularity constant at 0.8-1

- Set bottom triangularity at minimum achieved earlier (0.3-0.4) and top triangularity at 0.5-0.6
- \quad Session 2: B_{φ} scaling of the pedestal structure (supplement width scaling of XP1044 data)
- Keep the best achieved configuration in session 1 to perform the scan
- Reload 139047 ($\mathrm{lp}=1 \mathrm{MA}$) (or best configuration achieved in session 1 at high triangularity) and vary B_{φ}
- 0.35 T
[4 shots]
- 0.45 T
[4 shots]
- 0.55 T

Diagnostic Requirements and Analysis

- Need
- MPTS with newly implemented edge channels
- CHERS
- Filterscope
- EFIT
- Desired
- MSE
- GPI
- USXR (edge channels)
- Reflectometry
- Tangential SXR Edge channels
- Analysis
- Profiles analysis using Osborne tools
- ELITE, PEST, TRANSP

Backup

Pedestal Structure Analysis on NSTX is consistent with Higher aspect ratio tokamaks. Impact of Shape Moments on Pedestal ?

- XP 1044: Experiments of pedestal structure scaling have been performed to show: A. Diallo, submitted to NF (2011)
- Pedestal height increases quadratically with plasma current
- Pedestal width (Δ) scales with the poloidal β at the top of pedestal: $\Delta=0.17 \mathrm{~V} \beta$ consistent with MAST results.
- no clear scaling of the pedestal height with B_{φ}
- limited data set
- pedestal height does not ALWAYS saturate before the ELM crash

- what is the effect of plasma shaping on the pedestal structure?
- The effect of plasma shaping role in setting the pedestal width and height has yet to be quantified.
- XP1074 confirms the increase of pedestal density and temperature with triangularity
- The width, however, has large errorbars which we hope to reduce with the addition of the new MPTS channels

