

Supported by

Effects of Triangularity and B $_{\varphi}$ **on Pedestal Structure in ELMy Discharges**

A. Diallo, R. Maingi, A. Sontag,S. Gerhart, E. Kolemen, R. Bell,B. LeBlanc, M. Podestà, et al.

Wednesday, June 08 2011 B252

XP1112 TSG Review

Need for Further Understanding of the Pedestal Structure Evolution to Project for Future Devices through the Testing of Pedestal Models

• Higher R/a tokamaks have shown the pedestal height increases with triangularity and *I_p* (*not shown here*)

Consistent with ELITE modeling

- In NSTX, we show that the pedestal height increases with δ
 - Variability in pedestal height can be attributed to ELM frequency irregularity.
 - Pedestal width has shown large excursion consistent with scattered pedestal height.

Goal: Complete XP1074 scan of the bottom triangularity δ and quantify their effects on the pedestal width

- This XP targets FY 2011 Joint Research Milestone on the pedestal structure
- Complete systematic scan of the bottom triangularity at fixed Xpoint height to quantify the dependence of the triangularity on the pedestal structure with additional MPTS channels.
- Obtain a "clean" B_{ϕ} scaling of the pedestal structure
- Questions this XP might address:
 - How does the pedestal width depend on the bottom triangularity?
 - Is the pedestal buildup during an ELM cycle depending on the shaping?
 - Which of the two knobs (bottom or average triangularity) has the dominant effect on the pedestal structure? (if time permits)
 - Can we determine the range of values in triangularity enabling to transition from the peeling to peeling-ballooning dominated drive in the stability curve?
 - What are the fluctuation characteristics during an ELM cycle for high and low triangularity?
 - Quantify the scaling of the pedestal structure with B_{ϕ} and project to NSTX-U
 - Supplement the NSTX pedestal database for modelers.

Example of Target Discharges

Drsep is a reliable knob to achieve constant ELM frequency during the discharge

Drsep

- Scan was performed at 900 kA
- Lithium deposited > 100 mg
- ELM-free to ELMy regime
 - Target drsep > -5 mm to generate ELMy discharges

2 Session-Run Plan (in order of priority)

Se	ession 1: Effect of δ on pedestal structure	
1.	Aim: Improve ELM reproducibility during the discharge	
2.	Reload 142433 discharge at high triangularity (0.7- 0.8)	[4 shots]
	• Ip = 0.8MA, Bt = 4.5kG	
	Biased down: drsep = -5 mm	
	Keep top triangularity between 0.3 and 0.5	
	Include the X-point height and strike point controls	
	Lithium @ 50 mg	
	 Vary drsep to [-10 ; -15; -20] mm to insure reproducibility of the ELM frequency 	
3.	Reload 142427 discharge (0.3- 0.4)	[4 shots]
	Keep the same top triangularity as above	
	 Vary drsep to [-10 ; -15; -20] mm to insure reproducibility of the ELM frequency 	
4.	Reload 142426 (0.5 - 0.6)	[4 shots]
	 Vary drsep to [-10 ; -15; -20] mm to insure reproducibility of the ELM frequency 	
5.	Decision point:	
	If ELM frequencies are not reproducible enough !	
	Increase Lithium to 150 mg	
	 Increase Drsep to -20 mm to obtain ELM frequency < 100 Hz and step from(2) - (4) 	([12 shots])
6.	If time permits (??), vary the top and bottom triangularity independently keeping the average triangularity constar	nt at 0.8-1
	 Set bottom triangularity at minimum achieved earlier (0.3-0.4) and top triangularity at 0.5-0.6 	([5 shots])
Se	ession 2: B_{ϕ} scaling of the pedestal structure (supplement width scaling of XP1044 d	ata)
_	Keep the best achieved configuration in session 1 to perform the scan	
_	Reload 139047 (Ip = 1MA) (or best configuration achieved in session 1 at high triangularity) and vary B_{ω}	
	• 0.35 T	[4 shots]
	• 0.45 T	[4 shots]
	• 0.55 T	[4 shots]
		24 (41) discharges

٠

•

Diagnostic Requirements and Analysis

- Need
 - MPTS with newly implemented edge channels
 - CHERS
 - Filterscope
 - EFIT
- Desired
 - MSE
 - GPI
 - USXR (edge channels)
 - Reflectometry
 - Tangential SXR Edge channels
- Analysis
 - Profiles analysis using Osborne tools
 - ELITE, PEST, TRANSP

Backup

Pedestal Structure Analysis on NSTX is consistent with Higher aspect ratio tokamaks. Impact of Shape Moments on Pedestal ?

- XP 1044: Experiments of pedestal structure scaling have been performed to show: A. Diallo, submitted to NF (2011)
 - Pedestal height increases quadratically with plasma current
 - Pedestal width (Δ) scales with the poloidal β at the top of $\frac{1}{2}$ pedestal: Δ = 0.17 Vβ consistent with MAST results.
 - no clear scaling of the pedestal height with B_{ϕ}
 - limited data set
 - pedestal height does not ALWAYS saturate before the ELM crash
 - what is the effect of plasma shaping on the pedestal structure?
- The effect of plasma shaping role in setting the pedestal width and height has yet to be quantified.
 - XP1074 confirms the increase of pedestal density and temperature with triangularity
 - The width, however, has large errorbars which we hope to reduce with the addition of the new MPTS channels

