

Achieving I-mode on NSTX

I-mode is an attractive operating regime with H-mode energy confinement and L-mode particle confinement

- Operating regime found on C-MOD
 - H-mode like T_e pedestal
 - L-mode like density profile
- Typically achieved via:
 - Operating in the "unfavorable" grad-B drift direction (USN)
 - Low q_{95} (< 5 on C-MOD)
 - high I_p moreso than low B_t
 - High δ
 - Strong edge pumping
- NSTX is expected to have a narrow operational window to achieve I-mode

How to identify I-mode?

- 1. H-mode like T_e and L-mode like n_e
- 2. Appearance of a high frequency, weakly coherent mode
 - > 100 kHz
- 3. Must not show the typical indicators of an H-mode transition
 - Abrupt decrease in D_{α} or
 - Positive increase in core density

[DG Whyte, NF. 50 (2010) 105005]

Proposed Shot Plan – Search for I-mode

- Begin with fiducial discharge [2 shots]
 - $I_{\rm p}$ = 0.9 MA, $P_{\rm nbi}$ = 4 MW, ~150mg lithium deposition, $\delta r_{\rm sep}$ ~ 0
 - Shot 141445 and 141454 as basis
- Slow δr_{sep} ramp to scan $\delta r_{sep}\,$ and prevent early H-mode transition [2 shots]
 - Ramp up ~ 0 to >+ 10 mm from 100-300 ms
 - Ramp down ~ 10 to 0 mm from 300-500 ms
- Adjust discharge fueling downward to minimize edge neutral density [2 shots]
 - Roughly 200 Torr increments
- Adjust neutral beam power to avoid H-mode [4 shots]
 - Use the β_N controller set to $\sim 2-3,$ or
 - Pre-programmed beam timings if necessary
- Increase I_p and repeat to scan q_{95} in USN (1.1, 1.2 MA) [5 shots]
 - Decrease $I_p = 0.7$ for completeness (high q_{95})

If I-mode is identified during the slow δr_{sep} ramps ...

- Stop δr_{sep} ramps and document discharge conditions
- Attempt a long pulse I-mode using conditions found in δr_{sep} ramp (I_p, P_{nbi}, fueling, etc)
- Fixed δr_{sep} scan at these conditions [2-4 shots]
 - Nominally $\delta r_{sep} = +5$, +10 mm (Use δr_{sep} found during the ramps)
 - Optimize P_{NBI} again if necessary
- Repeat above discharges with $\delta r_{sep} \sim 0$ for reference [2 shots]
- Return to δr_{sep} ramps at other conditions to explore the parameter space if time allows

BACK-UP

Run Plan: Adjusting Neutral Beam Power

$\underline{\beta_N}$ Controller

- Set $\beta_N \sim 2-3$ to avoid H-mode
 - Will likely require de-rating the beam voltage in order to modulate the beams

Pre-programmed timing

- Similar beam timing has been used before for H-mode studies
- Use programmed ramps in NBI power as shown for USN and LSN discharges
- Or, programmed beam modulation as was done for DN discharges

