Princeton Plasma Physics Laboratory NSTX Experimental Proposal

 Title: Dependence of edge plasma on lithium dose at high doses

 OP-XP-1113
 Revision:

 Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)

 PROPOSAL APPROVALS

 Responsible Author: R. Maingi
 Date

 ATI – ET Group Leader: V. Soukhanovskii
 Date

 RLM - Run Coordinator: S. Sabbagh
 Date

RESTRICTIONS or MINOR MODIFICATIONS

(Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE: **Dependence of edge plasma on lithium dose** AUTHORS: R. Maingi, D. Boyle, S. Kaye, C. Skinner No. **OP-XP-1113** DATE: **June 13, 2011**

1. Overview of planned experiment

The goal of this experiment is document the dependence of the ELM-free H-mode characteristics on the lithium 'dose' between discharges. Specifically the recycling, edge profiles (particularly n_e , P_e , and P_{tot}), edge stability, and Z_{eff} will documented over a range of high doses \geq 300 mg, as part of NSTX's contribution to the FY11 JRT on pedestal structure.

2. Theoretical/ empirical justification

The controlled introduction of lithium in 2008 provided substantial insight into lithium effects, as well as a number of refereed journal articles. References ELMy discharges in a boronized vessesl were obtained with 6.5 min of HeGDC between discharges. Lithium was then introduced in a controlled manner, resulting in growing periods of ELM quiescence [Mansfield, JNM 2009], slowly improving edge confinement [Canik, PoP 2011], and edge stability [Boyle, PPCF 2011 submitted]. Fig. 1 shows the evolution of several parameters during this scan as a function of the pre-discharge lithium dose. Note that the divertor D_{α} , confinement enhancement factor H97L, and profile peaking factors all varied with the lithium dose. However there were very few discharges obtained in the fully ELM-free regime with high lithium

Figure 1: Evolution of plasma parameters as a function of predischarge lithium 'dose': (a) Lower divertor D_a baseline value at t=0.4 sec, (b) energy confinement relative to ITER97-L scaling, (c) n_e profile peaking factor, (d) T_e profile peaking factor, and (e) P_e profile peaking factor. Panels (b)-(e) were computed at the time of peak W_{MHD} . [Maingi, PRL 2011 submitted]

dose > 300mg. These are needed to determine if the trends observed in Fig. 1 are continuous as they appear to be. As a specific example, we would like to determine if the shift of the edge n_e profile from the separatrix varies monotonically with the lithium dose at high dose rates; the answer has implications to general edge stability regimes dominated by kink/peeling modes, as NSTX appears to be [Maingi, PRL 2009].

3. Experimental run plan (1/2 day)

- 1. Start with a low triangularity 4 MW ELMy reference discharge, e.g. 129019, if time permits (2)
- 2. Add 300 mg of lithium and document, with constant fueling and NBI if possible (3)
- 3. Repeat step 2 with 450 mg of lithium; probably will need to increase HFS gas and drop NBI power in this step or in previous step, to 2-3 MW (5)
- 4. Repeat step 3 with 600 mg of lithium (4)
- 5. Decision point: either use 850mg or 1200mg of lithium, or both if time permits (4-8)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Up to 4 MW NBI, no rf, no CHI. Nominally plan for 2-3 MW NBI.

5. Planned analysis

EFIT, TRANSP, and pedestal profile/stability analysis.

6. Planned publication of results

Results allowing, this will be published at the next APS meeting, and as part of the final FY2011 JRT report.

PHYSICS OPERATIONS REQUEST

TITLE: **Dependence of edge plasma on lithium dose** AUTHORS: R. Maingi, D. Boyle, S. Kaye, C. Skinner No. **OP-XP-1113** DATE: **June 9, 2011**

Brief description of the most important operational plasma conditions required: Medium delta discharge that produces ELMy H-mode before lithium is added, i.e. 129019. When high lithium does is added, it becomes ELM-free, as in 129038. **Previous shot(s) which can be repeated:** Previous shot(s) which can be modified: 129019, 129038, 129041 **Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) I_{TF} (kA): **4.5 kG** Flattop start/stop (s): I_p (MA): **0.8 MA** Flattop start/stop (s): Configuration: Limiter / DN / LSN / USN: LSN drsep=-5mm Equilibrium Control: Outer gap / Isoflux (rtEFIT) / Strike-point control (rtEFIT) Outer gap (m): **8-11 cm** Inner gap (m): **2-4 cm** Z position (m): Elongation: 1.8-2 Triangularity (U/L): **0.5-0.6** OSP radius (m): Gas Species: **D** Injector(s): **C:** 70-90 Duration (s): **NBI** Species: **D** Voltage (kV) **A: 90 B: 90 ICRF** Power (MW): Phase between straps (°): Duration (s): CHI: Off / On Bank capacitance (mF): LITERs: Off / On Total deposition rate (mg/min): Temperature (°C): unheated LLD: EFC coils: Off/On Configuration: Odd / Even / Other

DIAGNOSTIC CHECKLIST

TITLE: Dependence of edge plasma on lithium dose AUTHORS: R. Maingi, D. Boyle, S. Kaye, C. Skinner DATE: June 13, 2011 Note special diagnostic requirements in Sec. 4 Note special diagnostic requirements in Sec. 4

No. **OP-XP-1113**

stic requirements in Sec A

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		\checkmark
Bolometer – midplane array		
CHERS – poloidal	\checkmark	
CHERS – toroidal		
Divertor L-alpha array	\checkmark	
Divertor visible camera		\checkmark
Dust detector		
Edge deposition monitors		\checkmark
Edge neutral density diag.		
Edge pressure gauges		\checkmark
Edge rotation diagnostic		
Fast cameras – divertor/LLD		
Fast ion D_alpha - poloidal		
Fast ion D_alpha - toroidal		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP		
Gas puff imaging – divertor		
Gas puff imaging – midplane		
Hα camera - 1D		\checkmark
High-k scattering		
Infrared camera – standard		\checkmark
Infrared camera – 2-color		\checkmark
Infrared camera – wide-angle		\checkmark
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		\checkmark
Langmuir probes – bias tile		
Langmuir probes – RF ant.		
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		\checkmark
Magnetics – Rogowski coils		
Magnetics – Halo currents		
Magnetics – RWM sensors		\checkmark

Diagnostic	Need	Want
MAPP	riceu	
Mirnov coils – high f.		
Mirnov coils – poloidal array		$\frac{1}{\sqrt{2}}$
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		
MSE-CIF		
MSE-LIF		
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		
Plasma TV		\checkmark
Reflectometer – 65GHz		\checkmark
Reflectometer – correlation		\checkmark
Reflectometer – FM/CW		
Reflectometer – fixed f		\checkmark
Reflectometer – SOL		
RF edge probes		
Spectrometer – divertor		
Spectrometer – SPRED		\checkmark
Spectrometer – VIPS		
Spectrometer – LOWEUS		\checkmark
Spectrometer – XEUS		
SWIFT – 2D flow		
TAE Antenna		
Thomson scattering	\checkmark	
USXR – pol. arrays		\checkmark
USXR – multi-energy		\checkmark
USXR – TG spectr.		
Visible bremsstrahlung det.		\checkmark
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		