

Supported by

Thermography analysis of transient events in NSTX

Outline

- Calculate the 2D heat flux distribution with TACO code
 - \bullet How to choose the α parameter
 - Comparison of the Taco and Theodor results
- The characteristics of ELM divertor heat flux
 - Type III ELM
 - •Type V ELM
 - •Type I ELM
 - •Different situation ELM heat flux
- Survery the power load with 2D heat flux distribution
 - Toroidal asymmetry on divertor heat flux
 - Strange edge transport during L-H transition
 - Different 2D heat flux between type V and type III ELM

Outline

- Calculate the 2D heat flux distribution with TACO code
 - \bullet How to choose the α parameter
 - Comparison of the Taco and Theodor results
- The characteristics of ELM divertor heat flux
 - Type III ELM
 - •Type V ELM
 - •Type I ELM
 - Different situation ELM heat flux
- Survery the power load with 2D heat flux distribution
 - Toroidal asymmetry on divertor heat flux
 - Strange edge transport during L-H transition
 - Different 2D heat flux between type V and type III ELM

Taco code

- Taco is a inversion algorithm on a 3D Fourier method which solve the heat transfer equation and get 2D heat flux data.
- previous Taco did not consider the heat transmission coefficient, α parameter (Herrmann)
- Negative heat flux was often calculated after transient event
- •Negative heat flux can be removed with α parameter
- $\bullet \, \alpha$ parameter has large impact on the calculation of peak heat fluxes

Choose the α value

G De Temmerman, PPCF, 52 (2010) 095005 (14pp)

• IN MAST, the optimum value of α for the LWIR case sits at the knee of the curve while in the MWIR case, it sits in the steepest part of the curve •IN NSTX, Choose the α value to keep the energy deposition constant after discharge

Comparison of TACO and THEODOR results

- Good consistent q on a single radial line between TACO and THEODOR
- The heat flux distribution almost the same between TACO and THERDOR on a single radial line

Outline

- Calculate the 2D heat flux distribution with TACO code
 - \bullet How to choose the α parameter
 - Comparison of the Taco and Theodor results
- The characteristics of ELM divertor heat flux
 - Type III ELM
 - •Type V ELM
 - •Type I ELM
 - •Different situation ELM heat flux
- Survery the power load with 2D heat flux distribution
 - Toroidal asymmetry on divertor heat flux
 - Strange edge transport during L-H transition
 - Different 2D heat flux between type V and type III ELM

Divertor heat flux during type III ELM

Divertor heat flux during type V ELM with high δ

•Type V ELM will Increase the transport and reduce the peak heat flux with large λ_{α}

• A strange heat flux region existed between 0.25-0.30s

Divertor heat flux during type V ELM with low δ

- \bullet During 0.201-0.208s, the q_{peak} increased and λ_q decreased and power deposition seems constant
- •the q_{peak} is 0.62MW/m² at 0.24s, 1.93MW/m² at 0.21s. It almost decreased 70% q_{peak}
- During type V ELM, the q_{peak} decreased and increased with almost constant power deposition
- Type v ELMs(0.24s) reduced the 40% q_{peak} compare to ELM free phase

Divertor heat flux during type I ELM

- λ_{q} decrease ~40% during type I ELM filament
- •6KHZ energy transport between type I ELM (GPI)
- λ_{qn} is similar between type v ELM (# 132403) and inter type I ELM.

• $au_{I\!R}^{ELM}$ was defined as ELM rise time

•In the first phase, $(t \le \tau_{IR}^{ELM})$ the target temperature and the power increase up to a peak value

•In the second phase, ($t > \tau_{IR}^{ELM}$) the target temperature decays back to the Inter-ELM value

T. Eich, JNM, 337–339 (2005) 669–676

Different situation ELM heat flux

The relationship between situation I,II ELM and β_{p}

•The maximum q_{peak} will appeared at ELM filament with a low β

•With β_p increase, the number of situation I ELM begun to decrease, and the situation II ELM appeared.

•The real physical mechanism is still unknown

square represent the situation I ELM heat flux, triangle represent the situation II ELM heat flux

Outline

- Calculate the 2D heat flux distribution with TACO code
 - \bullet How to choose the α parameter
 - Comparison of the Taco and Theodor results
- The characteristics of ELM divertor heat flux
 - Type III ELM
 - •Type V ELM
 - •Type I ELM
 - •Different situation ELM heat flux
- Survery the power load with 2D heat flux distribution
 - Toroidal asymmetry on divertor heat flux
 - Strange edge transport during L-H transition
 - Different 2D heat flux between type V and type III ELM

2D divertor heat flux distribution on NSTX

Toroidal asymmtry on divertor heat flux

According to the toroidal asymmetry

$$P_{load} = \sum_{\phi_1}^{\phi_2} \sum_{R_1}^{R_2} q(x, y) \cdot (\delta x)^2 \cdot (\phi_2 - \phi_1) / 360$$
$$A_{wet} = P_{load} / q_{neak}^{mean}$$

The reason of toroidal asymmetry is still unclear, toroidal ripple, 3D structure of filaments, misalign divertor tile or inconsistent surface property (α value)

Numerical Modeling of ELM Filaments on Divertor Plates

 The initial heat pulse during an ELM generate thermoelectric current between two divertor plate

•typical ELM stripe structures can be correctly modeled

ELM power load in MAST

Filament at different radial position and different toroidal angle generate the striated divertor heat flux

Striated heat flux in NSTX

- The striated heat flux (R>0.61m) was generated by filaments
- •It's unclear the reason which cause the striated divertor heat flux (R<0.57m)
- Question: Did the filaments and magnetic topology generate the striated divertor heat fluxes together?

Outline

- Calculate the 2D heat flux distribution with TACO code
 - \bullet How to choose the α parameter
 - Comparison the Taco and Theodor results
- The characteristics of ELM divertor heat flux
 - Type III ELM
 - •Type V ELM
 - •Type I ELM
 - •Different situation ELM heat flux
- Survery the power load with 2D heat flux distribution
 - Toroidal asymmetry on divertor heat flux
 - Strange edge transport during L-H transition
 - Different 2D heat flux between type V and type III ELM

Strange edge transport during L-H transition

- Increasing P_{load} before L-H transition was caused by decreased Drsep
- During L-H transition , the q_{peak} first decrease then increase
- A delayed time existed between q_{peak} and A_{wet} during L-H transition

2D heat flux distribution during L-H transition

During L-H transition, the heat flux around the out strike point first become very small, then increase to ELM-free phase

Filaments during L-H transition

Filaments generated the striated heat flux(R>0/61m)

Separate the power deposition with two parts:

$$P_{in} = \sum_{\phi_1}^{\phi_2} \sum_{R < 0.57m} q(x, y) \cdot (\delta x)^2 \cdot 360 / (\phi_2 - \phi_1)$$

$$P_{out} = \sum_{\phi_1}^{\phi_2} \sum_{R>0.61m} q(x, y) \cdot (\delta x)^2 \cdot 360 / (\phi_2 - \phi_1) \text{ (filaments)}$$

The power load during L-H transition

During L-H transition

- •P_{in} decrease fast to a low value then increase
- •P_{out} decrease slower than P_{in}
- P_{out} can be several times bigger than P_{in}

Heat flux evolution during L-H transition

132406 (6.3khz)

- The intermittent filaments still happen during L-H transition
- •~3KHZ heat flux oscillation appeared before L-H transition
- During L-H transition, the heat flux near the OSP first decrease then increase

- •The Power deposition seems just increase ~13% during Type V ELM peak than between ELMs
- The plasma wetting area decrease with type v ELM
- There is a delay time between P_{in} and P_{out} during type V ELM

2D heat flux distribution during type V ELM

During ELM-free , the heat flux region is close to the OSP
During type V ELM, the heat flux region is far from the OSP
The heat flux inside the CHI gap increase first

2D heat flux during type III ELM

• The position of q_{peak} can be 34cm far from the OSP at pre-ELM

•The Pin and Pout increase together during type III ELM

Summary

 $_{\odot}$ TACO has been applied successful on heat flux calculation in NSTX $_{\odot}$ A criteria to choose the α value: Modify α until the energy deposition is kept constant after discharge

 $_{\odot}$ The width of power deposition on divertor (λ_q) will decrease with type III ELM due to the obvious type v ELM during inter-type III ELM.

- Type v ELM will increase the transport and decrease the peak heat flux
 Compare to ELM phase phase
- \odot Situation II ELM will appeared under high β_p
- $_{\odot}$ It was first time to analyze the power load with 2D heat flux distribution in NSTX
 - Divertor heat flux is toroidal asymmetry
 - Strange edge transport has been reported during L-H transition
 - •There is a delay time between Pin and Pout during type V ELM, Pin and Pout increase together during type III ELM

