

Supported by

Materials and Plasma-Facing Components (M&P) TSG Prioritization for FY2015 and campaign startup Coll of Wm & Marv

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics **Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

M.A. Jaworski, C.H. Skinner, J.-P. Allain, B. Wirth, R. Kaita and R. Maingi

NSTX-U M&P TSG Pre-Pre-Forum Meeting #2 Jan 21, 2015 - B318, PPPL

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Agenda

- Introduction (Jaworski)
 - Meeting agenda and format
 - FY2015 run-campaign needs and B -> Li transition
 - FY2016 research needs for milestone R16-2
 - Guidance for writing strong XPs within the M&P TSG
- MAPP information and results from LTX (Kaita & Lucia)
- Open discussion (Jaworski moderator)
 - XPs/XMPs for B->Li introduction and first 2 run-months
 - XPs/XMPs for R16-2 preparation and other research needs

Each TSG needs to provide input on B->Li transition at the Pre-forum meeting #2

- Initial discussions indicate a lot of desire for boron campaign and establishment of boronized baseline performance
 - We arguably know less about our boronized PFCs than with lithiumconditioning
 - Have unique opportunity to get surface science information on B vs. Li conditions and start doing hypothesis-driven experiments
- MAPP provides key capabilities for surface analysis, but good correlations with plasma performance require traditional plasma diagnostics
 - Well-characterized B discharges needed for "fair" comparison to Li
 - XPs will be asked to indicate B and/or Li to help gauge demand
- MAPP will also be essential to understanding the B->Li transition

FY2016 milestone R16-2 needs baseline data before high-Z upgrade

- Tile design process has commenced
 - Still evaluating pros/cons between W vs. Mo
 - Targeting row-2 of NSTX-U with minimal divertor height changes
- Development of reference, high-Z discharge proposed at previous meeting alongside reference parameter scans (e.g. power, connection length, current)
 - Already expect useful information comparing B vs. Li conditions on graphite substrates (e.g. erosion vs. erosion + diffusion)
 - Expect to repeat discharges with high-Z to simultaneously get 4-point experimental matrix in substrates and coatings
- Reference shape will also provide closer strike-point to MAPP location for material transport and evolution studies

ITPA-DSOL activities have a lot of leverage with high-Z programme at this time

- DSOL-31: Leading edge power loading and monoblock shaping
 - High-spatial resolution IR measurements of existing carbon tile gaps to determine whether heat flux is "missing" in NSTX-U as in JET-ILW
 - Start determining "threat level" to NSTX-U PFCs
- DSOL-34: Far-SOL fluxes and link to detachment
 - Diagnose whether conditions at strike-point enhance cross-field transport into far-SOL to better predict first-wall power loading (e.g. LPs + GPI)
 - Also impinges Particle Control TF and cryo-pump calculations
- DSOL-35: In/out divertor ELM-energy density asymmetries
 - Determine power splitting during ELMs and impact on design margins for PFCs during ELMy discharges

Guidance for writing strong-XPs in the M&P TSG

- Goal: move away from "kitchen physics" branding
- Having the following items indicated in the XP idea submission will get you extra consideration from M&P TSG leadership group
 - Clear, hypothesis-driven experimental proposals
 - Strong partnering with theorists/modelers informing experimental scans/conditions
 - Partnering with surface-science and other materials groups who can supplement tokamak studies with lab measurements
 - Well-defined initial publication strategy including XP partners and diagnosticians
- M&P TSG leadership is here to help!
 - Discussions to date have already started finding potential sticky parts in this, but we are here to help clarify and help make connections

MAPP and LGI presentations...

Initial cut at XP/XMPs for run and B demand

			Candidate	First 2	Candidate	Surf.		
No.	Title	XP/XMP	Lead	months?	Theorist	Sci.	B and/or Li	Purpose
MP1	MAPP operational readiness	XMP	Allain	Yes			В	Demonstration/model MAPP inter- discharge anaylsis
MP2	Effect of B conditioning	XP	Skinner/Allain/ Bedoya	Yes	Wirth	yes	В	Correlate B-zation PFCs with discharge performance
MP3	Effect of B->Li	XP	Skinner/Allain/ Bedoya	Maybe?	Wirth	yes	and	Characterize surface conditions during transition to Li
MP4	B vs. Li material migration	ХР	Nichols	Maybe?	Wirth	yes?	and	Compositional variation at MAPP and QCM mass flux with WallDYN sim.
MP5	Impact of B vs. Li on divertor conditions	XP	Jaworski	Maybe?	SOLPS/UEDGE modeler?	yes?	and	Compare B vs. Li lifetimes and divertor impact for high-Z reference shape
MP6	Far-SOL particle fluxes DSOL-34	XP	Zweben/ Jaworski	No	Myra/??	??	Or*	Examine far-sol filling and turbulence changes due to SP condition
MP7	Leading edge heat fluxes DSOL-31	ХР	Gray	Maybe?	Jaworski PFC/kinetic ??	??	B prefer.	Determine leading edge heating with existing graphite gaps. Compare with JET-ILW.
MP8							_	

Tell us what is missing!

Ye Olde Slides from pre-forum meeting #1 beyond here

FY 2016 research milestone will drive XP/XMP development (ITPA-DSOL experiments relevant to high-Z upgrade)

- R(16-2): Assess high-Z divertor PFC performance and impact on operating scenarios (joint with divertor-SOL TSG)
 - Carbon-only baseline needed in FY2015 for comparison
 - Validate high-Z PFC design in actual operation
 - Establish additional heat-flux mitigation schemes needed for wholemachine high-Z conversion
 - Determine high-Z impurity production/influx and impact on operations and mitigate if necessary
- DSOL-31: Leading edge power loading and monoblock shaping
 - High-spatial resolution IR measurements of existing carbon tile gaps to determine whether heat flux is "missing" in NSTX-U as in JET-ILW
- DSOL-34: Far-SOL fluxes and link to detachment
 - Diagnose whether conditions at strike-point enhance cross-field transport into far-SOL to better predict first-wall power loading (e.g. LPs + GPI)
- DSOL-35: In/out divertor ELM-energy density asymmetries
 - Determine power splitting during ELMs and impact on design margins for PFCs during ELMy discharges

Develop high-Z relevant baseline discharge in FY2015

- Incremental upgrade to high-Z proposed for outboard row 2 tiles
- Proposed figure-of-merit (FOM) for divertor PFC is unmitigated heat-flux to divertor surfaces
 - High-delta NSTX-U reference discharge: $P_{ini}{\sim}12MW$ FOM up to $60MW/m^2$
 - Medium-delta, high-Z discharge: P_{inj}~9MW FOM up to 40MW/m²
- FY2015 development of medium-delta shape and create "standardized" parameter scans
 - P_{inj}, q95, divertor gas puffing, B-field and angle-of-incidence, other mitigation
 - Duplicate scans in FY2016 (single variable experiment!)

Critical diagnostics for milestone and DSOL activities

- ASC-support with wall conditioning experiments
 - MAPP characterization of boronization and lithiumization
- Critical diagnostics/capabilities for milestone R16-2:
 - IR thermography for heat flux, including high-spatial resolution view (DSOL-31)
 - Langmuir probe for particle fluxes to divertor under different operating conditions (low-high density, detached, etc.) (also DSOL-34)
 - Visible and X-ray emission spectroscopy to characterize impurity production, SOL and core conditions
 - Managing plasma-surface interactions of boronized and lithiumized high-Z PFCs with MAPP and standard plasma diagnostics
- Additional diagnostics/capabilities would be beneficial:
 - IR view on vertical target for DSOL-35 (or new plasma shape)
 - GPI to support far-SOL effects (DSOL-34)
 - Divertor bolometry for power-balance evaluation
 - MAPP measurements and post-run coupon analysis for material transport studies (support new model capabilities with WallDYN)
 - Surface science studies, e.g. mixed-material sputtering and detailed plasma-exposed sample characterization