XP 1540 - Understanding longevity of lithium coatings in NSTX-U

M&P – TSG Review

August 5, 2016

F. Scotti, V.A. Soukhanovskii, F. Bedoya, C. Skinner, J.P. Allain

Lawrence Livermore National Laboratory

MSTX Upgrade

Office of

Science

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences.. Lawrence Livermore National Security, LLC

Goal: Understand and characterize lithium coatings longevity, conditioning effectiveness

- NSTX developed empirical recipe for Li conditioning (dose, frequency of predischarge evaporation)
 - Effectiveness typically evaluated based on confinement, pedestal changes, ELMs
 - Observed divertor recycling, lithium sputtering evolution inconsistent with gross erosion
 of pre-applied lithium only
 - Diagnostic capabilities and evaporation history limited conclusions in NSTX
- <u>Goals</u> of this XP are:
 - Understand experimentally-observed lithium coatings lifetime, testing role of different lithium degradation mechanisms
 - Develop a metric for lithium effectiveness based on PMI measurements to correlate with global parameters
 - Complements parallel studies with boronization in XP1505
- Assigned 1day of P-1b priority
- Support Thrust MP-1, MP-2 NSTX-U five year plan
- Cross-cutting with PC-TF

NSTX-U

• "Wall coating optimization for increased particle pumping"

<u>Motivation</u>: What determines lifetime of lithium effects on NTSX/NSTX-U plasmas?

- Different possible mechanisms on experimental timescale:
 - Surface elemental composition (D interaction with Li and not C at strike point):
 - Thickness vs implantation depth (~ 5-10 nm)
 - Thickness vs graphite roughness (~ microns)
 - Areal density vs fluence (gross/net erosion)
 - Intercalation in graphite
 - Surface chemical state (passivation/activation of Li surface):
 - Reaction with background gases (O₂, H₂O, ..)
 - Saturation with deuterium
 - Fraction of first wall with lithium coverage
 - Fraction of PFCs area with lithium thickness above ion implantation depth
 - Progressive coverage of PFCs without direct evaporation

Tools: Enhanced spectroscopic tools + MAPP for most extensive measurements up-to-date

- Deliverables to be compared with global parameters:
 - Local deuterium recycling (OSP, upper div, MAPP)
 - Li, C, O sputtering (OSP, upper div., MAPP)
 - Deuterium pump-out from SGI or LFS gas pulses
 - maintaining high recycling regime, gas amount to be determined in XMP
 - Wall loading rate from deuterium particle balance
 - MAPP elemental composition

NSTX-L

- MAPP to complement spectroscopic measurement:
 - Good correlation between spectroscopy and MAPP obtained with boronization in FY16
 - XMP planned for MAPP close-up view on TWICE-I system
 - XPS between shots to provide elemental surface composition
 - Minimal XPS time ~10 minutes (0.1eV/s, 20 eV range, (Li,) C, O) to maintain same history on MAPP and PFCs
- Theory/modeling: UEDGE (+ ERO) to aid in interpretation of surface composition from spectroscopic results

Experimental plan: test effect of erosion, intercalation, reaction with background gases

- Established highly shaped ELM-free Li-conditioned H-mode from XP1529
- 1) Test effect of thickness-areal density/fluence (~1 day):
 - Scan ~32x in areal density/incident ion fluence and 16x in thickness
 - 50mg (~10nm~D⁺ range) to 800mg (~160nm)→0.5-8e21 at./m²
 - For every lithium dose, scan integrated incident ion fluence:
 - Repeat shots with 4-6 MW NBI until performance degradation (2-4 per condition)
 - Further enhance particle flux via div. gas puff, SGI?
- 2) Test effect of reaction with background gases

- Constant dose but different rate, scan time before the next shot
- 3) Test effect of intercalation (timescale tested separately via MAPP):
 - Constant Li dose at different rates ending right before next shot (5, 10, 20 mg/min)
- 4) Evap. coatings vs. plasma deposition, real-time Li to refresh coatings?
 - Add LGI sub-ELM threshold (300 $\mu\text{m})$ to shots that show passivation

Experimental plan: test effect of erosion, intercalation, reaction with background gases

- Established highly shaped ELM-free Li-conditioned H-mode from XP1529
- 1) Test effect of thickness-areal density/fluence (~1 day):
 - Scan ~32x in areal density/incident ion fluence and 16x in thickness
 - 50mg (~10nm~D⁺ range) to 800mg (~160nm)→0.5-8e21 at./m²
 - For every lithium dose, scan integrated incident ion fluence:
 - Repeat shots with 4-6 MW NBI until performance degradation (2-4 per condition)
 - Further enhance particle flux via div. gas puff, SGI?
- 2) Test effect of reaction with background gases

- Constant dose but different rate, scan time before the next shot
- 3) Test effect of intercalation (performed separately via MAPP):
 - Constant Li dose at different rates ending right before next shot (5, 10, 20 mg/min)
- 4) Evap. coatings vs. plasma deposition, real-time Li to refresh coatings?
 - Add LGI sub-ELM threshold (300 $\mu m)$ to shots that show passivation

Discharge considerations

- LSN ELM-free H-mode or with infrequent ELMs, ~1s flat top
 - Use reference discharge from Li introduction XP (XP1529)
 - Should run right after XP1529 to minimize lithium amount in vessel
 - Frequent ELMs at low lithium amounts would complicate measurements
 - Is degradation decision point based on ELM-reappearance enough?
- Ideally high δ. Low δ with OSP as far out as Row 2 also OK
 - Need to minimize outer strike point drift over time

- High power L-mode (e.g., 204202) also possibly OK
 - Would decouple PMI changes from pedestal changes but complicates deconditioning decision point (need something like O II/D-γ with TMB)
- How to include MAPP? Every MAPP scan is ~ a lost shot
 - One right after evaporation and one at the end of series for two doses?

Shot plan: Option 1

- Scan lithium deposition (8x): e.g., 50-100-200-400 mg
 - XP1529 will inform on minimum useful lithium dose
- Repeat discharges at max available NBI power to increase fluence on PFCs until degradation of performance observed
- 14 shots, 800 mg condition (+4 shots) only if time allows

Example of areal density/fluence scan assuming 1s, 1.e23 ion/m²/s @ OSP

Li evaporation (mg)	50	100	200	400	800	
Areal density (at./m ²)	5E+20	1E+21	2E+21	4E+21	8.00E+21	
Thickness (nm)	10	20	40	80	160	Estimated fluence (ions/m ²)
	5.00E-03	1.00E-02	2.00E-02	4.00E-02	8.00E-02	1.00E+23
	2.50E-03	5.00E-03	1.00E-02	2.00E-02	4.00E-02	2.00E+23
		3.33E-03	6.67E-03	1.33E-02	2.67E-02	3.00E+23
		2.50E-03	5.00E-03	1.00E-02	2.00E-02	4.00E+23

ISTX-U

Shot plan: Option 2

- Based on the assumption that we can do 2s H-modes with Li
- Repeat discharges to increase fluence on PFCs until degradation of performance observed
- 15 shots, 800 mg condition (+5 shots) only if time allows

Example of areal density/fluence scan assuming 1&2s, 1.e23 ion/m²/s @ OSP

Li evaporation (mg)	50	100	200	400	800	
Areal density (at./m ²)	5E+20	1E+21	2E+21	4E+21	8.00E+21	
Thickness (nm)	10	20	40	80	160	Estimated fluence (ions/m ²)
	5.00E-03	1.00E-02	2.00E-02	4.00E-02	8.00E-02	1.00E+23
	2.50E-03	5.00E-03	1.00E-02	2.00E-02	4.00E-02	2.00E+23
		2.50E-03	5.00E-03	1.00E-02	2.00E-02	4.00E+23
			3.33E-03	6.67E-03	1.33E-02	6.00E+23
			2.50E-03	5.00E-03	1.00E-02	8.00E+23

9 **L**

Diagnostics

Need:

- Upper and lower divertor fast cameras (E-top, J-top, J-mid, H-bot)
- TWICE-I, TWICE-II
- Core profile diagnostics: MPTS, CHERS
- Operational diagnostics: (magnetics, EIES, plasma TV, neutrons)
- Langmuir probes
- IR camera (fast)
- Want:
 - QMB
 - DTI, GPI, ENDD
 - EUV spectrometers
 - IR Camera (slow)
 - LADA

NSTX-U

- VIPS2, DIMS, UTK spectrometers
- 1D-CCD cameras
- Core + divertor bolometry

Already operational in FY16 Not yet operational in FY16

XP-1540 Review, Lithium Longevity in NSTX-U

10 👢

<u>Strategy</u>: Simultaneous monitoring of different lines for divertor impurity influxes

- <u>Simultaneous</u> measurement of multiple lines of same charge state (carbon and lithium) to avoid uncertainty in plasma parameters (T_e, n_e) in lower divertor
 - C II lines with different dependencies on plasma parameters \rightarrow C¹⁺ influx determination (514, 723 nm)
 - Li I lines with different dependencies on plasma parameters
 - \rightarrow Li⁰⁺ influx determination (460, 610, 670 nm)
 - Gerö band (CD) + C II line
 - \rightarrow chemical vs physical contribution
 - 909 nm region

NSTX-L

 \rightarrow C⁰⁺ influx, evaluation of f_{chem}/f_{phys}

Upper divertor views to inform on evolution of upper PFCs

Backup

XP-1540 Review, Lithium Longevity in NSTX-U

<u>Strategy</u>: Simultaneous monitoring of different lines for divertor impurity influxes

- <u>Simultaneous</u> measurement of multiple lines of same charge state (carbon and lithium) to avoid uncertainty in plasma parameters (T_e, n_e) in lower divertor
 - TWICE-I: Li I (460 nm) + Li I (610 nm)
 - TWICE-II: O II (441 nm) + D-γ
 - Phantom E-top: C I (909 nm)
 - Phantom J top: C II (723 nm)
 - Phantom J mid: C III (465 nm)
 - DIMS: Gerö band region
 - VIPS2: C I (909 nm) region
 - H bottom: Li I (670 nm)
 - ENDD: D-α

- 1D-CCD (LD, UD, CS): C II (514 nm)
- 1D-CCD (LD, UD, CS): Li I (670 nm)
- 1D CCD (LD, UD, CS): D-α

Phantom (4), CIDTEC (2 two-color), DALSA (1), 1D-CCD (9) cameras, 3 spectrometers

Tools: Upgraded diagnostics for full poloidal,

toroidal coverage of impurity emission

High resolution views for MAPP and inboard divertor

Full poloidal coverage of impurity

- View of the NBI armor tiles (ENDD)
- Views centered at probes toroidal location
- Availability/reliability of probes limited extrapolation of influxes
 - Redundant wavelength approach implemented for FY2015

XP-1540 Review, Lithium Longevity in NSTX-U

NfHz0OE 116313 900.0 s 2 mm flux surfaces

Tools: Upgraded diagnostics for full poloidal, toroidal coverage of impurity emission

XP-1540 Review, Lithium Longevity in NSTX-U

