XP 1511: Multi-Machine Studies of the L-H Power Threshold Dependence on Aspect Ratio

M.W. Bongard, R.M. Churchill, R.J. Fonck, A. Loarte, G.R. McKee, J.A. Reusch, D.R. Smith, K.E. Thome

University of Wisconsin-Madison Pedestal Structure and Control Topical Science Group Review

> PPPL June 29, 2015

L-H Power Threshold Diverges From Multi-Machine Scalings as $A \rightarrow 1$

- L-H transition has aspect ratio dependent effects¹⁻⁴
 - Magnitude of transition power
 - P_{LH}/P_{ITPA08} ~ 1 at conventional A
 - $P_{LH}/P_{ITPA08} \ge 10$ in Pegasus
 - Magnetic topology for minimum P_{LH}
 - Conventional A ~ 3: SN, favorable ∇B
 - Low-A ~ 1.5: CDN
 - A ~ 1 (Pegasus): None observed to date
 - ITPA calls for P_{LH} studies at low A

⁴K.E. Thome *et al.*, EPR 2014

- ² Y.R. Martin *et al.*, J. Phys.: Conf. Ser. **123**, 012033 (2008)
- ³ J. Wesson, <u>Tokamaks</u> (4th ed.), Oxford Univ. Press (2011), p. 630

¹ R. Maingi *et al.*, Nucl. Fusion **50**, 064010 (2010)

Multi-Machine Experiments Necessary to Characterize $P_{LH}(A)$ Over Appropriate Range

- Recent analytic P_{LH} model⁵ (FM3) may explain other observed "hidden variables"
 - Captures ITPA08 scaling in: B, n_e, S
 - $P_{LH,limited} / P_{LH,diverted}$ related to edge q
 - Links $P_{LH} n_{e,min}$ to edge collisionality
 - Favorable experimental comparisons on C-Mod, TCV, and Pegasus
- Multi-machine experiments in US facilities can collectively span wide range of A
 - Low A (NSTX-U)
 - Conventional A (DIII-D)
 - Near-unity A (Pegasus)

Alcator C-Mod $P_{LH}(L_{\parallel})$ compared to FM3 scaling.⁶

5 W. Fundamenski *et al.*, Nucl. Fusion 52, 062003 (2012)
6 Y. Ma *et al.*, 24th IAEA FEC, San Diego, No. EX/P2-04 (2012)

XP 1511 Objectives: Measure P_{LH} in Scenarios Relevant to FM³ Model

- NSTX-U to provide low-A (~ 1.6) portion of multi-machine study
 - Pegasus: (A ~ 1.2); DIII-D (A ~ 2.5) proposed
- Elements
 - Magnetic geometry scan
 - Favorable SN, Limited, DN
 - Edge q scan
 - NSTX-U q₉₅ ~ 10
 - Pegasus-like: $q_{95} > 15$
 - DIII-D-like: low $q_{95} < 10$
 - Document edge profile evolution over L-H, H-L transitions
 - Vary NBI tangency radius mix
- Document edge parameters, dynamics with 2D BES, TS

Methodology: P_{LH} Measured with P_{NBI} Scans

- Nominal discharge phases
 - I_p ramp over ~0.2 s
 - Remaining in L-mode
 - L-mode quiescent phase
 - Ends at latter of 100 ms post I_p flattop or terminating NBI preheat
 - NBI power ramp for L-H
 - 4 power levels, 200 ms duration
 - NBI power reduction for H-L
 - 2 power levels, 200 ms duration
- P_{LH} refined via P_{NBI} level scans
 - Coarse (a): $\Delta P_{\text{coarse}} = P_{\text{max}}/4$
 - Fine (b): $\Delta P_{\text{fine}} = P_{\text{coarse}}/3$
 - Confirmation (c): no L-H

P_{LH} Scenarios and Prioritizations

Ι _ρ [MA] Β _τ [T]	0.6	1.2	1.4
0.4			DIII-D-like low q ₉₅ LSN [6]
0.65	Pegasus-like, high q ₉₅ LSN + R _{tan} [2] DN [5]	NSTX-U nominal q ₉₅ LSN + R _{tan} [1] LIM [3] DN [4]	

Table 1: Operating scenarios for P_{LH} evaluation. Scenarios are numbered by their prioritization.

- Scenarios 1–4: P_{LH} in NSTX-U, Pegasus-like configurations
 - High- R_{tan} beam mix scans at high, low I_p in favorable LSN topology
 - 21 shots [incl. 6 contingency/development]
- Scenarios 5-6: Time/success permitting
 - q_{edge} topology effects in high, low q configurations [8 shots, incl. development]

M.W. Bongard, XP1511 TSG Review, 6/15

Required Machine / Diagnostic Capabilities

- MPTS, CHERS, MSE profile diagnostics required
- Edge turbulence diagnostics strongly preferred
 - 2D BES
 - GPI
 - Reflectometry
- Availability of NBI source 2A [R_{tan} = 130 cm] required for beam tangency scan
- XP1511 should be scheduled after several X(M)Ps:
 - XP1522: intends to develop stable L-mode targets; minimizes development efforts
 - XMP for MPTS outer gap alignment
 - XMP for CHERS compatibility with 2nd NBI line

