

Supported by

XP1512:Characterization of the Pedestal Structure as function lp, BT, and Pnbi

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

A. Diallo, R. Maingi, D. Smith and many others

and the NSTX Research Team

PED Group Review B252 May 29 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

NSTX-U goal: develop predictive capability for pedestal structure and dynamics for FNSF

- EPED (static mode) predicts limiting pedestal height and width on multiple high aspect ratio machines
 - EPED is only applicable to the pressure, therefore cannot distinguish individual transport channels

- NSTX-U will provide extensive detailed pedestal data in FY15 & FY16 to:
 - Extend the pedestal width scaling
 - Characterize the pedestal evolution
 - density and temperature separately
 - compare with standard aspect ratio
 - Control and optimize the pedestal

- Map out the NSTX-U pedestal stability boundary prior to an ELM and test EPED1 hypotheses
 - For a range of I_p , B_t , P_{NBI} , and triangularity
 - Characterize the pedestal structure
 - Investigate the pedestal dynamics and associated turbulence
 - Assess the transport limiting the pedestal

 Investigate the above in boronized and lithiated discharges in order to understand the impact of wall coatings on the pedestal structure and its dynamics

Shot Plan: 1/2 Day experiment for each wall condition (Boron and Lithium)

- Scan $I_p = [0.7, 1.0, 1.3] \text{ MA} @ B_t = 0.65 \text{ T} \text{ and } P_{nbi} = 4 \text{ MW}$
 - This dataset is to be obtained during <u>XP1520 (Kaye et al.)</u>
 - $I_p/B_t = [1.1, 1.5, 2]$
- Fix I_p = 1.0 MA

8 + (2) shots

- Vary $P_{nbi} = [4, 6, 8] MW @ B_t = 0.4 T$
 - NBI mix: 1A+2A; 1A+2A+2B; [1A+2A+2B+(2C) optional]
- Vary P_{nbi} = [6, 8] MW for B_t = 0.65 T (4MW case is to be obtained in XP1520)
 - NBI mix: 1A+2A+2B, [1A+2A+2B+(2C) optional]
- Short I_p scan at low triangularity (~0.5) at fixed $B_t = 0.4 T$ and $P_{nbi} = 4 MW$
 - Ip = [1.0, 1.2] MA
 - NBI mix: 1A+[2A or 2B or (2C)]

- 2 + (2) shots
- Total shots per 1/2 day = 10 + (4)
- (In lithiated discharges: 100 150 mg lithium evaporation)