Overview of XP 1525 – Rotation effects on AEs

- AEs potentially significant to core energy & fast-ion transport
 Predictive capability ultimately necessary
- Structure, frequency & stability sensitive to rotation
- Experiment: beam mix scan (to vary unstable modes) w/ n=3 braking
 - Stability: effect of rotation on composition of spectrum
 - Measure structure & frequency vs. rotation
- Two main goals:
 - Explore potential control tool for modes
 - Data to challenge theories on AE stability and mode structure

Required plasma/machine conditions

- 4 MW NBI H-mode (various mixes of 1st and 2nd beamlines with sources at 2 MW)
- High rotation (e.g. f_{ROT0}/f_{Alfvén0} > 0.2 if possible), which may require low B_T (e.g. B_T = 0.45 T)
- Substantial n = 3 braking (e.g. $\Delta f_{ROT0} / f_{ROT0} \sim \frac{1}{2}$ if possible)
- Low density:
 - $n_0 < 4 \times 10^{-13}$ during flattop for TAE instability
 - $n_0 < \sim 7 \ge 10^{-13}$ and monotonic n(r) until t = 640 ms for reflectometer measurements
 - Lithium
- Possible moderation of density and density "ears"
 - dRsep jogs, n=3 RMP
 - Strategic "reset" with H-L-H transition via jogs or NB reductions

Run Plan

- Basic pattern repeated 6 times: vary beam mix each time
 - A. rotation drive followed by TAE measurement period w/ breaking
 - B. rotation drive followed by CAE/GAE measurement period w/ breaking
- Rotation drive: 6 MW 2nd beamline (maximum drive)

Measurement period NB mixes: 1st beamline stability scan

2.1A (2 MW) + 1C (2 MW)

3.1B (2 MW) + 1C (2 MW) – least unstable TAEs ?

1B notches synced w/1A blips for MSE + CHERS measurements

Measurement period mixes: 2nd beamline stability scan

All: 1B (2 MW) + 1C (2 MW) – minimally destabilizing to TAEs

1B notches synced w/1A blips for MSE + CHERS measurements

<u>Mixes</u>

4.2A blips (2MW) – most unstable to TAEs?

5.2B blips (2MW)

6.2C blips (2MW) – least unstable to TAEs?

Backup

UCLA 6