

HL-2A 2017 experimental campaign opportunities and HL-2A capabilities

Southwestern Institute of Physics

PPPL, Princeton, NJ, 12/12/2016

•Southwestern Institute of Physics 1/30

Present status of HL-2A tokamak (2017)

- <u>HL-2A tokamak:</u>
 - R/a=1.65m/0.4m
 - lp=150-300kA, B_T=1.3-2T
 - ne=1-4e19 m⁻³, T_e=1-3 keV
- Heating and fuelling
 - ECRH: 2-3MW (coupled power), 500Hz modulation,68GHz
 - ➢ NBI: 1-2MW, 40keV
 - ➤ LHCD: 1MW, 3.7GHz
 - Pellet: repetitive
 - SMBI: 0.2-3MPa, 100Hz modulation
- ≻ RMP (n=1)
- More than 30 diagnostics have been developed

•Southwestern Institute of Physics

Physics activities on HL-2A

- •MHD instability
 - •Edge stability
 - •Neoclassical tearing mode
 - sawteeth
- Transport and confinement
 - •Turbulence characterization
 - •Heat transport
 - Particle transport
 - •Momentum transport,
 - •Transport barriers: ETB,ITB
 - Nonlocal transport
 - Impurity transport
- Energetic particle physics
 - •Wave properties: BAE, TAE, EPM
 - nonlinear EP
 - •Fast particle transport

Boundary physics
Divertor physics
SOL flows
Fuelling: SMBI
RMP(2014)
Heating and current drive
ECRH/ECCD
Neutral beam
Low hybrid wave(2014)

HL-2A 2017 campaign: taskforce group

Taskforce group	Leaders	Subjects and roles
Pedestal physics and ELM control	L.W.Yan, W.L.Zhong	LH transition, pedestal width, ELM mitigation,
Edge transport	Y.H.Xu, M.Xu	Filament, zonal flow, GAM,
Core transport	Z.B.Shi, D.L.Yu	ITB, momentum transport, heating/particle transport
MHD	Y.Liu, X.Q.Ji	NTM control, disruption mitigation,
Energetic particles	W. Chen, Y.P. Zhang	AEs and EPM control Fast ion loss
Heating and current drive	S.D.Song, X.Y. Bai	Noninductive CD, PAM antenna coupling, RF startup, H-mode with ECRH

HL-2A 2017 campaign schedule and special considerations for NSTX-U team

- Rough plan is to start operation in March 2017 and to finish the run in June 2017
- Internal experimental proposal review is going now
 - NSTX-U team is exempted from this review
 - Still need to work with task force leaders in proposal preparation process
- Run time is guaranteed for NSTX-U team (with reasonable XPs) and no preset runtime allocation limit

Diagnostics for transport study

•The transport study, i.e. electron heat transport, particle transport, impurity transport, and momentum transport, have been carried out on HL-2A.

•Perturbative techniques: gaspuffing, SMBI(H,D2,He,...), pellet, LBO(AI,Fe,W,Ti,30Hz), M-ECRH/ECCD (500Hz), NBI(4 pulse), ...

• <u>Te profile Measurement</u>	• <u>Ne profile measurement</u>			
•32 Channel ECE (32ch/3cm/10us)	• 4 Channel HCN laser Interferometer			
	•Reflectometer,33-110G(6x10 ¹⁹ m ⁻³ ,20us)			
• <u>Ti profile Measurement</u> •CXRS (for Ti(r) 1.5cm,10ms,32ch)	 Multi-Channel Detector arrays Soft X-Ray System: 5arrays 100chs Bolometer system: 4arrays 48chs Ha measurement: 2arrays 92chs 			
 •Plasma rotation •CXRS (for Vt(r), .5cm,10ms, 32ch) •Doppler (for Vp(r), >20 ch, 2 ms) •Probe array (edge velocity) 	•Impurity •EUVSpectroscopy(3nm-40nm,6ms/2mm)			

Diagnostics for energetic particle physics study

Heating: ECRH (3MW/1s), NBI(2MW/1s), LHCD(1MW)

•ECRH modulation: 500Hz

Fast ion spectrum and distribution

- CXRS (32ch)
- Imaging-FIDA (2017)

Fast electron spectrum and distribution

Multi-channel CdTe array (9-ch)
 Soft-X-ray spectrum (SDD)
 ECE (50-110G,110-170G, 2ms)

Fast particle loss

gama-ray spectrum(Nal, HPGe)
 Fission chamber (2-ch)
 ³He Neutron spectrum
 Neutron camera (9-ch, 2015)

Wave-particle interaction

- Mirnov probe (18ch+10ch)
- ➢ Reflectometer (2ch)
- Interferometer (4ch)
- Doppler (>20ch)
- ► ECE/ECEI (32ch, 384ch)
- Soft-X-ray array (100ch)
- ►BES (2017)

Diagnostic systems for fluctuation measurements on HL-2A

Parameters	Diagnostics	channel	Spatial	Temporal	Reliability	error	
Diama	Visible CCD camera	1	Entire	9 ms	>90%		
Plasma image	Fast visible CCD camera	1	-	100 ns			
Te	Ге Multi-channel ECE/ECEI		2.5/1 cm	1/10 µs	>70%	a.u.	73-97G
12.0	MW interferometers	4		1 µs			
ne	Doppler reflectometers	24	1cm	1-5ms			17-60GHz
MHD	Mirnov coils	2 sets	m<17, n<4	50 kHz	100%	2 %	
	Soft-x-array	20*5	3 cm	10 µs	>90%	5%	
Edge parameters	Movable electrostatic probe	2	1 mm	1 µs	~50%	30%	
$(ne, 1e, EAB, \dots)$	Fast reciprocating probe	1	1 mm	1 µs	~70%	30%	
Divertor	Movable electrostatic probe	2	1 mm	1 µs	>50%	30%	
parameters	Target plate probe	7*4	1 cm	1 µs	100%	30%	
	Microwave interferometer	1		10 µs	<30%	5%	
Target plate temp.	IR camera	1	1 mm	1 µs	>70%	1%	
Edge turbulence	Electrostatic plate	3	1 mm	1 µs	>50%	30%	
Plasma rotation doppler reflectometer		4	1 cm	1-20 ms	~50%	10%	

Soft X-ray array

- spatial resolution: 2.5cm
 temporal resolution: 10us
 - Southwestern Institute of Physics

Mirnov coils

Parameters:

SWIP

HL-2A

- Poloidal: 18channels
- Toroidal: 10channels
- Sampling: 1MHz

Electrostatic probe system

SWIP

- **Parameters:**
- •F/#=2.8
- 32 spatial channels;
- •Temporal and spatial resolutions of ~10 ms and 1.5 cm;

DBS systems for poloidal rotation and turbulence measurements

- Multi-channel Doppler backscattering (DBS) /Reflectometry systems built by SWIP for HL-2A
 - 8-channel K-band system: 17,18,19,20,21,22,23,24 GHz, O-mode
 - 8-channel Ka-band system: 31,32,33,34,35,36,37,38GHz, O/X-mode
 - 8-channel Q-band system : 34,36,38,40,42,44,46,48GHz , O/X-mode
 - 4 frequency correlation DBS system: one launcher, 2/16 receivers: 32,34,36,38GHz , O/X-mode (studying toroidal, poloidal correlation) $_{\text{c}}$
 - Tunable systems:26-40GHz (O/X-mode), 40-60GHz(X-mode)
 - Systems detailed in
 - Z.B.Shi et.al., ITPA diag.(2011),
 - Z.B.Shi et.al., IRW12(2015),
 - Z.B.Shi et.al., RSI 87(2016)113501,
 - W.L. Zhong, et.al., Nucl. Fusion 55 (2015) 113005,
 - W.L.Zhong et.al.,1st EPS diag. (2015)

13 /30

X-mode FMCW reflectometer for density profile measurement

- •Q,V,W bands: 33-110GHz
- •Bt=1.3-2.4Tesla
- •n_e=(0-4)X10¹⁹m⁻³
- •Temporal resolution: 20us→10us
- •Spatial resolution: 0.5cm

32-channel superheterodyne ECE system

- 1. Working frequency: 60-160GHz
- 2. Bt=1.3-2.4T for whole Te profile
- 3. Temporal/spatial resolutions: 10us, 3cm

8-channel HCN interferometer

SWIP

Southwestern Institute of Physics 16

16 /30

Fast electron bremsstrahlung CdTe array

- •9 channels
- •Energy range:10-200keV
- Resolutions:1ms/5cm

•The energetic electron energy spectra during ECRH

Southwestern Institute of Physics 17 /30

Multi-pulse Laser blow-off system

- •30Hz, multi-pulses
- •Target: AI, Fe, Ti, W

●First observation of W spectrum on HL-2A >WVII216.2 andWVII261.4。

•Z.Y. Cui, et al., NF 55(2015)093034

•C. F. Dong, et al., 201505 A3 meeting

•Target after LBO

Southwestern Institute of Physics

Space-resolved EUV spectrometers

SWIP

≻LFS image (X2),

SWIP

>384channels (polo. 24* radi. 8*2)

➤resolutions: ~1cm/10us

•Basic observations on HL-2A similar to those on other tokamaks

Southwestern Institute of Physics

Visualization of blob generation and propagation with GPI system on HL-2A

HL-2A

- Gas: He, Pressure: 0.2-1.0 Mpa
- Fast camera: sampling : 200-400 kHz, spatial : 1-3 mm
- Visible light detector: the imaging area:20x20 mm²

The eddies tiled, deformed; eddies evolution into smaller-scale blobs in a few us

Two dimensional electromagnetic measuring HL-24 system

- measured by mirnov and electronmagnetic probe Electromagnetic probe applied to study edge turbulence, including coherent mode, pedestal instability, LCO, L-I-H transition, etc
- The effective area of one magnetic probe is about 3x5 mm², band width: 300 kHz
- The shielding cover is made by CFC material

SWIP

Many parameters simultaneously measured (Pe、Rs、Br, B0 and its gradient)

Southwestern Institute of Physics

8-channel ³He Neutron spectrum

- For fusion neutron spectrum measurement:
- >8 moderator balls: from 12 to 4 inches.
- ➤Temporal resolution: 1ms.

SWIP

L-24

➢Energy spectrum range:0~5MeV₀

Southwestern Institute of Physics

9-channel radial neutron camera (RNC)

- •Neutron camera:
- >9-ch for neutron flux profile
 - ≻5-ch available
- ≻Temp. resl.: 1-10ms
- >Spatial cover: r/a≤0.7

n/γ spectrum

•Evolution of neutron flux during NBI

•Neutron flux profile

RMP coils on HL-2A

•A distinct increase of the ELM frequency is observed as the RMP coil current increases

Southwestern Institute of Physics

Far-infrared laser polarimeter

The FIR laser polarimeter has been developed to measure the density and Faraday rotation

4 chords for interferometer;
4 chords for polarimeter;
Faraday rotation angel resolution: 0.2 °
Time resolution: 0.1ms

•Y Zhou, Z.C.Deng Y.G.Li, et al, "The development of multichannel FIR interferometer/polarimeter on HL-2A" *Review of scientific Instruments*,78,11,3503(2012)

Newly developed diagnostics

Diagnostics	parameters	
CO2 interferometer	Line-averaged density, 1ch, 1us (for density feedback)	2016
BES	Density fluctuation, based on NBI	2017
CTS	High K turbulence, ETG	2017
Scintillator fiber array	Fast ion loss, 20keV-200keV, 12ch (working on calibration issue)	2016
imaging-FIDA	Fast ions, 10ms, (need to improve signal)	2016
PCI	Density fluctuation	2017
Wide zoom IR camera	Whole vacuum chamber	2016
He-GPI	2D density fluctuation	2017
CIS	Impurity(Carbon) rotation (CIII, SOL, divertor, high spatial resolution)	2017

Southwestern Institute of Physics

Summary

•More than 30 diagnostic systems have been developed for the routine measurements: profiles, MHD, fluctuations, transport, impurity,...

•HL-2A team is inviting NSTX-U team to propose experiments and run time is guaranteed