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Use of EBW thermal emission (EBE) for plasma diagnostics.
EBE spectrum in spherical tokamak.

B-X-O mode conversion. Effect of the magnetic shear.

EBE observation with the fast rotating mirror.

Pitch angle reconstruction from EBE.

EBE imaging — edge g-profile diagnostic

Summary
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EBWSs for Plasma Diagnostics

» Thermal EBWSs are emitted from the EC resonance and its higher harmonics.
» Unlike O and X modes the EBW mode is trapped inside the plasma.

« EBWSs are electrostatic waves. They cannot propagate in vacuum.

« EBE can escape plasma via B-X-O mode conversion (MC).

« B-X-O MC is highly anisotropic. It is efficient within a narrow angular window
determined by the magnetic field at the O-mode cut-off (w = w), ) layer.

 This fact can be used for magnetic pitch angle measurements.

* The w = w,, layer position depends on n, only. It can be obtained from
Thomson Scattering measurements.

« EBE spectral measurements can provide estimates of the total magnetic field.
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EC Harmonics Visibility with EBE

d Even high EC harmonics are optically broadening of is given by the factor 1/(1 + 3N, (v / c))

thick (t ~ 200 at 5w, ) in MAST 75 — r UHR iy
70 ] V0 Plasma resonance

O Higher EC harmonics partially 65

shadow the lower EC harmonics 60

Q Doppler broadening of EC harmonics >~
decreases central accessibility 45 —

O Edge current can block the access to E
the second harmonic as observed in o5
EBW emission studies 00 ]
| 15 —
O Fundamental EC resonance is less 10
affected by edge currents and Doppler 5 e 0
broadening 0.9 1 1.1 1.2 1.3 1.4

R [m]
Midplane resonance topology with Doppler broadening.
Edge magnetic field reconstructed from the EBE spectral

measurements, shot #8694. % C C F E
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RH O-mode
sin2¢=N2”,opt=Y/(Y+1), Y=./0

O Launch / viewing plane is determined by B,,; and
Vn.in the layer where ogg = @,

O Angle between Vn, and optimal direction depends
only on | Byy |

O Magnetic pitch angle can be deduced from EBE
and density profile measurements
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EBE spectrum at optimal viewing angle.
Note the effect of TF ramp down at 0.35 s.
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EBE Observation with Rotating Mirror

B-X-O mode coupling window

o0 degrees

Mirror design

Fast rotating mirror (FRM) is installed in front
of the radiometer antenna on MAST.
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Shear Effect on X-O Coupling

N, — N.

z,0pt

0.06-

Q Full wave modelling of B-X-O mode coupling (MC)
revealed strong sensitivity of MC to the magnetic shear.
O The main effect of magnetic shear on MC is a tilt of the
MC window around optimal direction.

O Shear effect can be taken into account within the
framework of the WKB approximation

R. A. Cairns, C. N. Lashmore-Davies, Phys. Plasmas, . a) Ny

vol. 7, No 10, Oct. 2000, p. 4126. 0"“- 3 oo —doz b 006 o
. : : : N, —

MC efficiency including magnetic shear 2

can be estimated by:

i (25 )2 20 1, | ]
— —rn,n, -I-n —rn..
L,w (0tQ,) n “
T=exp| —m 3;2
¢ 2w 1 5 5
—ren.,
i (0+Q,) ng}. “ _
where N, =n,, oN,=n, 6=N,= N, Q. = W '
L =6/xandr= L/ L Contour plots of the X—O MC, both axes vary between #0.1.
I ~ n .

15 GHz, L,=0.2 m. a) no shear r = 0, b) shear included r = 1.

Note at r = 0 the formula converts into Mjolhus’s formula 5 ( ( F E
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Shear Effect in Full Wave Treatment

0.8

r@» -
0.4
O It is clear that X-O MC windows are

not elliptical in full wave treatment. ., 5 a)

O The effect of magnetic shear on MC
is not only a tilt of MC window around
optimal direction but also a tilt around P
N,=0, N=0.

0.8

Q In the presence of steep density and
magnetic field gradients the full wave

solutions may be very different from the if
WKB estimates. )

o
=N
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J. Preinhaelter et al, Rev. Sci. Instrum., Vol. 72, No. 1, Contour plots of the B-X-O MC in N, — N, plane for linearly

January 2001

polarized wave. H-mode plasma (small L) in MAST, shear

included. a) 18 GHz, b) 30 GHz, ¢) 40 GHz, d) 60 GHz .
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Simulated Signals from Radiometer with FRM

Shot #21896, Central Az=19°, EI=19°, FRM=4.5°| —®— S16GHz
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Full wave simulations for FRM, based on EFIT and TS § ‘ ‘ F E
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EBE Observation with FRM

Plasma Density

shot #17925

| ! |
* Thermal plasma emission is
highly anisotropic

* Amplitude modulation with
the period of mirror rotation is

seen throughout the shot
* Modulation is a combination
of a number of factors:
a) geometric modulation
stray radiation

b)
c) anisotropic ECE
d) anisotropic EBE

Extreme upward viewing angles

Extreme toroidal viewing angles
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Measurements at Two Polarisations

Shot #21896, Aza = 79.6°, Azm = 50.7°, Pitch = 48°
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One FRM period of EBE signal at 16 GHz during

ELM-free H-mode — black. Analytic EBE signal — red.

EBE signals, V

Best match was achieved at n,/ grad(n,) ~5 mm and
magnetic pitch angle of 48° .

16 GHz, Shot #21896
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16 GHz EBE signal measured simultaneously at

perpendicular polarisations. Signals have similar
amplitudes indicating close to circular polarisation.
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EBE in a Range of Frequencies
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EBE signals with FRM during ELM-free H-mode, shot # 21896. Note
the delay of the dip in EBE signals with the frequency decrease =
Magnetic pitch angle quickly decreases toward the edge. Modulation
depth of EBE is smaller than predicted by full-wave modelling by
factor of 2. = The MC window is wider = Local density gradient
may be higher than estimated from TS. = The delay of the dip
typically is larger than 7/3 between 18 and 13 GHz EBE which
requires pitch angle decrease ~20° in less than 2 cm layer.
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Conversion efficiency
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MC efficiency calculated analytically. The delay of the dip
can be explained only by a decrease of the magnetic pitch
angle towards the plasma edge. Required pitch angle
gradient is about 1 degree/mm. Distance between 18 GHz
and 14 GHz MC layers is about 8 mm from TS.
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Pitch Angle Reconstruction from EBE

Shot # 21896
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SM rotation period Pitch angle from MSE and EBE measurements.
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Pitch Angle Reconstruction from EBE

Shot # 21896
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EBE Imaging — Edge q Diagnostic

Figure 2.3: The Very Large Array in New Mexico. Image: NRAO/AUI/NSF.
http://www.nrao.edu

O MC processes are intrinsically 2D

O Angular structure and position of MC windows are
strongly related to the edge current distribution

O EBE imaging is based on the phased array image
reconstruction and aperture synthesis technique

O Two polarizations are simultaneously recorded
from each antenna

O Antennas cover the range from 6 to 40 GHz

4 IF signals are digitized directly in a full vector form
with digitization rate of 250 Msps

QO First experiments are planned in 2010

3 antenna array assembled for laboratory tests. % ( : < : F
CULHAM CENT
FUSION ENE
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EBE Imaging — Trial Experiment on MAST

3 antenna array installed in sector 7 on MAST.
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Summary

d Feasibility studies of thermal EBW emission as a potential edge current diagnostic
have been conducted on MAST with the fast rotating mirror.

O In H-mode the magnetic pitch angle, estimated from EBE, has a narrow maximum
near the bottom of the 2w, resonance. This agrees well with earlier EBE spectral
observations.

Q Pitch angle variations (WKB analysis) at the plasma edge are stronger than
measured by MSE. Full wave EBE analysis is in agreement with WKB results.

O Spatial resolution of the FRM technique is limited by TS space resolution.

O Temporal resolution is limited by the FRM speed, typical 10 ms and 5 ms at
maximum FRM speed.

O EBE imaging based on a phased array imaging technique is under development.
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