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Outline

• high-power diplexers: Motivation, and principle

• Design of high-power resonant diplexers

• results from prototypes, low-power / high-power tests

• Near-term plans for applications on ASDEX Upgrade

• Present developments

• Summary, outlook



Narrow-band high-power diplexers  
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• switching by frequency-shift keying  f1 – f2:

∆f / f ≈ 10-4, with ∆UGA or ∆UB ≈ kV 

� power toggles between outputs
� synchronous stabilization of NTMs

slow switch by mechanical tuning of diplexer

� continuous operation during switching

• power combination of two sources:
fixed input frequencies f1 and f2

f1 / f2 in push-pull: 

� combined power toggles

• cw directional coupler 
discriminates in-line ECE from ECRH 
(cf. talk by B. Hennen)

Applications of diplexers in ECRH systems  

Switching 
synchr. with 

island rotation

f1 / f2

f1

f2

Islands rotate

with frequencies ≈≈≈≈10 kHz

2 MW component test bed for ITER

in-line ECE
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High-power Diplexers
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Resonant diplexer Resonant diplexer 
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Transmission measured with matched receiver

(spurious modes are not detected)

Resonant output:

• Narrow resonances,                                       
here typ. 10 MHz (FWHM)

• 97% -bandwidth ≈ 500 MHz,                 
limited by dispersion of gratings

• Excitation of higher-order modes

in the resonator for f ≠ 140 GHz

Non-resonant output:

• Deep notches < -30 dB  

• For f ≠ 140 GHz, transmission
tends to – 1.2 dB level
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Power transm. efficiency,  and mode purity

Resonant
output 2:

TEM00:  99,8 %
���� mode-filter!

Non-resonant
output 1:

TEM00:  99,0 %

Res. output 2
off resonance:

cross-talk:  < 2 %
mainly in TEM00

Non-res. output
in resonance:

cross-talk in 
high-order modes

few % ohmic, 
diffraction loss

(resonator is
equivalent to
4.5x 4 mirrors)

high 
transmission
efficiency

Mk I



• Transmission functions for

non-resonant output and

resonant output

in good agreement with calculation

• Insertion loss, non-resonant ch.:

absorption (mainly coupling):   0.8 %

cross-talk (about theory): typ.   2.2 %

• Insertion loss, resonant channel:

absorption (resonator, coupl):  4.4 %

cross-talk (wrong modes!): 3.9 %

• Average power absorption

for pure HE11 input is 1…5 % 
depending on frequency.

Power transmission efficiency Mk II 
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Port Isolation
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High-power test at the ECRH system of W7-X

Beam
Dump 1

Beam
Dump 2

OUT 1

IN 2IN 1

OUT 2

w
a
v
e
g

u
id

e
s
e
c

ti
o

n
m

a
tc

h
in

g
o

p
ti

c
s

FADIS Mk I

FADIS Mk IIa



Power Combination

2 gyrotrons 370 / 560 kW 
fed into diplexer Mk I:

• clear demonstration of  

power combination

• Power ratio after 1 s:

5.5%  OUTPUT 1

94.5 %  OUTPUT 5

• Main problem: frequency

stability of the gyrotrons

• pulse limited by uncooled

Al mirrors:

mmw-power on gratings is
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Frequency tracking of diplexer (slope of resonance)

frequency variation
by 200 V - steps of 
body voltage

regulation to equal
power output in
out1 and out 5

���� ideal for stable
fast switching

140.09

GHz

140.04
gyrotron frequency

mirror drive control

non-res. out 1

resonant output 5

10 s

Mk II typical shots:  500 kW / 20 s   (max. 75 sec, limited by un-cooled mirrors)

���� long-pulse switching experiments

In preparation:   tracking to peak of resonance ���� power combination experiments

Mk IIa



Fast switching with 5.2 kHz

• frequency tracker follows

• frequency modulation depends
on absolute frequency

• switching contrast of > 90 %   
only during shorter periods

• gyrotron frequency is influenced
by (the phase of) reflected power 
within the gyrotron ?

• However: Fairly linear modulation
characteristics measured e.g.   
on Gycom tube at FTU
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Characteristics measured with high power
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NTM experiments planned at ASDEX Upgrade

• Synchronous NTM stabilization
1 beam toggles between two launchers
ECCD position poloidally or toroidally displaced

by about 180 deg with respect to NTM phase

• independent experiments
(more ITER-relevant, possibly with 2 gyrotrons)

- 1 beam for NTM stabilization

- 1 beam for other purpose

AUG  ECRH-2 launcher

y
x
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control of 
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In-line ECE system for ASDEX Upgrade

Decoupling of gyrotron from ECE

Suppression of gyrotron stray radiation           
in the sensitive ECE receiver 

However: high stability of gyrotron /                          
frequency tracking is required

� additional notch-filters are needed

� for AUG: polarisation independent
Mach-Zehnder Interferometer (W. Bongers)

gyrotron f0 in

plasma

Resonant

diplexer

ECE (CTS) out
ECE, stray radiation

f ≠ f0 to loadgyrotron f0 in

plasma

Resonant

diplexer

ECE (CTS) out
ECE, stray radiation

f ≠ f0 to load

In-line ECE for ASDEX Upgrade: 

cf. talk by B. Hennen

Compact diplexer with cw potential
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Resonant Diplexer with „HE11-Resonator“

Direct connection of HE11 waveguide

phase-reversal mirrors for HE11 radiation

Two devices (MkIIb and MkIII) under test
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Resonant diplexers in large ECRH system
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• Transmission functions for

non-resonant output and

resonant output

in good agreement with calculation

• amplitude and phase patterns
show high mode purity:

Non-resonant output: 95.9 % 
Resonant output: 98.8 %

(Input: 97.3 %)

• Insertion loss

non-resonant 97 %  

resonant channel :    90 %

(larger crosstalk…) 

Preliminary low-power results from HE11-diplexer

Nonresonant Resonant output

0 20 40 60 80 100 120
0

20

40

60

80

100

120

x (mm)

y
 (

m
m

)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

HE11-Diplexer:  Resonant output, amplitude,  3 dB/colourstep

x (mm)

y
 (

m
m

)

1,330

1,630

1,930

2,230

2,530

2,830

0 20 40 60 80 100 120
0

20

40

60

80

100

120

x (mm)

y
 (

m
m

)

0,02000

0,8532

1,686

2,520

3,353

4,186

5,020

0 20 40 60 80 100 120
0

20

40

60

80

100

120

x (mm)

y
 (
m

m
)

-30

dB

0

0

deg

360

amplitude

phase

139,8 139,9 140,0 140,1 140,2
-30

-24

-18

-12

-6

0

A
m

p
lit

u
d
e
 (

d
B

)

Frequency (GHz)

 Resonant channel
 Non-res. channel



Diplexer operation with arbitrary polarisation?

−1π −0.5π 0π 0.5π 1π
coordinate perpendicular to grooves
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Summary

• High-power diplexers could strongly increase the performance and 

flexibility of ECRH as well as diagnostic systems. 

• High-power demonstration of fast switching, slow switching, and      

power combination from two gyrotrons;

• frequency tracking successfully tested

• Optimization / more data on frequency-modulation of gyrotrons is needed. 

• Applications at ASDEX Upgrade are in preparation: NTM stabilization with 

power toggling between launchers, and in-line ECE system.

• Compact designs with HE11 resonators can be directly connected to 

corrugated waveguides. 

• Applications of diplexers in ITER ? 





ECRH system for ITER

24 gyrotrons
170 GHz, 1 MW/cw 

8 beam lines per port
Design: 2 MW per line

Equatorial

Launcher

Upper 

Launchers

Replace mechanical 
waveguide switches

Upper �������� Equatorial
launcher by diplexers 

Increase of
power at

later stage?

Polarisers downstream 
from diplexers

Power combination 
of two gyrotrons?

continous switching EL / UL by
mechanical tuning of diplexer, 
gyrotrons keep operating

fast switching: NTM stabilization
+ continuation of ECRH in EL

hot-standby operation of tubes

options for power upgrade



• switching by frequency-shift keying  f1 – f2:
∆f / f ≈ 10-4, with ∆UGA or ∆UB ≈ kV 
� power toggles between outputs
� switch has no undefined state, cw operation

• power divider by mechanical tuning of trans. frequency 

• power combination of two sources:
fixed input frequencies f1 and f2

f1 / f2 in push-pull:  � combined power toggles

• dir. coupler to isolate ECRH from low-power diagnostics

Narrow-band diplexers in ECRH systems  
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Experiments with ECRH-system at W7-X 

Switching (1 gyrotron  ==> 2 outputs)

(P = 500 kW, fmod = 5 kHz,  ∆UB = 4 KV)

• high switching contrast

• main problem:  ∆f �� ∆P

• improvement factor for NTM,
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Designs for high-power diplexers

Mach-Zehnder interferometer

with dielectric splitters

in HE11 waveguide
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M1

M2

P2

Cal

SC1

Beam 
combination 
(BCO)

ECRH system for W7-X:
single-beam and multi-beam transmission up to the torus

M3

P1

Beam conditioning 
(matching
+ polarisation)

M5

MD

Dummy load

(CCR)
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Resonant Diplexer with „HE11-Resonator“

Direct connection of HE11 waveguide

phase-reversal mirrors for HE11 radiation

Two devices (MkIIb and MkIII) under test
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∆fmod ∼ ∆U ?

Frequency behaviour of free-running gyrotrons

���� optimization of gyrotron tuneability

���� tuning / tracking of diplexer

(An amplifier with sufficient power – the ideal solution – is not viable in next years)

f – chirp t < 1 s

spontaneous frequency jumps

∆fmod varies

f = f(U) = f(P)



Optimum NTM stabilization:
EC current drive in the O-point of the islands
(at least results similar to non-modulated ECCD)

==> power modulation of gyrotron,
synchronized with the island rotation
e.g. M. Maraschek et al., PRL 98, 025005 (2007)…

Disadvantages:
• installed gyrotron power is partly wasted,
• possible EMC problems
• overload of gyrotron collector

Alternative: FAst DIrectional Switch

Switch CW power between 2 launchers,
at positions where island phase differs
by about 180° (toroidally or poloidally) 

���� stabilizing power is increased by ≤≤≤≤ 2

Main motivation: Synchronous NTM stabilization

Switching 
synchronously 

with island 
rotation

f1 / f2

f1

f2

Islands rotate

with frequencies of ≈≈≈≈10 kHz 



Collective Thomson scattering using gyrotrons

Collective 
Thomson scattering

projects on TEXTOR, LHD, 
ASDEX Upgrade (Risø), ITER….

Benefits from resonant diplexer:

Gyrotron frequency filter:
- main frequency transmitted
- spurious frequencies are absorbed in the load. 
� dynamic range of the detection system is improved.

Spatial filtering:
- beam quality of the probing beam is increased,
� improved spatial resolution of scattering system

Decoupling of source from receiver:
� simple backscattering experiment without extra antenna
� useful for the commissioning and test of a CTS experiment

Load available for calibration
use mechanical tuning of resonator mirror 

gyrotron @f2 in

plasma

Resonant

diplexer

CTS (test) out
CTS, stray radiation

f ≠ f2 to load
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Integration into ECRH-2 of ASDEX Upgrade

- connection to any adjacent waveguides

- operation planned from autumn 2010

- connected to lower launchers sector 5

HE11

wave-

guide
in

in

out

out

4f-gyrotrons

FADIS

wg
MB-P

MB-E

-AUG-in

ECRH-2 launcher in sector 5

y
x

new 105 -140 GHz ECRH system



Experiments planned at ASDEX Upgrade

• Synchronous NTM stabilization
1 beam toggles between two launchers
ECCD position poloidally or toroidally displaced

by about 180 deg with respect to NTM phase

• independent experiments
(more ITER-relevant, possibly with 2 gyrotrons)

- 1 beam for NTM stabilization

- 1 beam for other purpose

• applications for plasma diagnostics
- in-line ECE (IPP - FOM)

- collective Thomson scattering (IPP - Risø)

(needs only one line / launcher)
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Mach-Zehnder diplexer in HE11 waveguide

L/2

f1

f2

two 3-dB hybrids (gratings / square waveguides / dielectric sheets)

+ delay line (HE11 waveguide / beam waveguide)

Transmission characteristics:
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Design of mock-up:

• 87 mm HE11 waveguides

• Delay line L = 0.87 m

• Cu mitre bends

• Si3N4 splitters (d ≈ 3mm, high loss!)



HE11 wg. diplexer: experimental results / outlook

Measurements on mock-up:

• power transmission as calculated     
(loss is dominated by Si3N4 splitters!)

• good agreement of measurement and 
calculation proves a good coherence 
of the fields, i.e. high mode purity

HE11 waveguide diplexers with diamond splitters promise high performance

Calculation including losses
(170 GHz, HE11 ø 63.5, diamond d=0.87mm)

Total transmission loss < 1%

Useful bandwidth > 3 GHz

High contrast (Max:Min)

operation at a second frequency
possible (e.g. 170 GHz and 136 GHz)



Two-loop resonator with square waveguides

Measurements on mock-up (105 GHz):

• agreement of measurement and calculation confirm principle

• absolute power transmission measurements to be done in protoype
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Compact two-loop resonator for HE11 input

Integrated resonator and matching optics for HE11 waveguide

parallel inputs and outputs allow easy integration

Independent on polarization

At present optimization of input- and output fields

experiments on FTU on power combination and NTM mode 
suppression planned

2a2/λ

HE11 88.9mm Circular 

corrugated WG

Matching mirrors injecting the 

beam with the right angle

WG to FTU



Frequency control / frequency tracking

motorized tuning of delay line / resonator length is necessary

movement of one mirror by ≈ λ/2,  typically < 1.5 mm 

drives: motor, piezo drives, voice coil (N.J. Doelman et al.,TNO)

control by small modulation of resonator length (mechanical) or gyrotron (voltage) 
and phase-synchronous detection of power in resonant channel (development)

variation of the power:  ……….must be avoided!

control of cavity cooling water (∆f ≈ 2...3 MHz/°C): …very slow, but helpful

control of Ugun-anode or Ubody: ….should be limited to ∆U needed for fast switching

but calculations at IAP for JP triode gyrotron:  modulation of Ugun-anode and Ubody

�strong frequency-shift keying without power modulation!  …. should be checked!

Injection locking / feedback?    …. theor. predicted, but feasible?? check!

frequency control / tracking of diplexer:

frequency control of gyrotron:
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The stellarator Wendelstein 7-X

ECRH:  140 GHz, 10 x 1 MW, CW

+ option:  70 GHz, 2 x < 1 MW





ECRH – System at the Stellarator W7-X
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Quasi-optical diplexer Mk II

compact, closed q.o. diplexer:

• compatible with HE11 waveguide, Ø 87 mm

• HE11 – TEM00 – converters

• Cu mirrors, uncooled, >> 10 s operation

• Teflon hose absorber for stray radiation

• 2 mitre bends at each output:
- coaxial input and output

- integrated polarizers (λ/8 and λ/4)

• control of resonator length ±±±± 1 mm
- simple (IPF) / voice-coil (TNO/FOM)

OUT 1 

OUT 2mirror of 
resonator
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HE11-TEM00 converter

focusing 
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Compact resonant diplexer with HECompact resonant diplexer with HE1111 input input 

Design options:

• TEM00 resonator (as usual),

HE11 -TEM00 converters at in / output

• HE11 resonator

(HE11 input and phase reversing mirrors)

• uptapers / free-space propagation

to reduce thermal load on mirrors 

( ø 63.5 mm:  6 MW/m2 � 3 MW/m2 ) 169,7 169,8 169,9 170,0 170,1
0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,9

1,8

2,7

3,6

4,5

∆∆∆∆f
mod

 = 33 MHz

f
2

 r
e
la

ti
v
e
 p

o
w

e
r 

in
 r

e
s
o
n
a
to

r5.5∆∆∆∆f
1
 = 180 MHz

∆f
F
 = 276 MHz

0.04

0.96

0.013

0.987

tr
a
n
s
m

is
s
io

n
 f
a
c
to

r

frequency (GHz)

f
1

Example:

distance of inputs:

d = 300 mm

resonator length:

L = 1075 mm



wg. Mach-Zehnder diplexers in large ECRH system

easy match of diplexers
to gyrotron frequencies
by choosing L
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Applications of diplexers in ITER ECRH system

Replacement of waveguide switches by adjustable diplexers: 

• arbitrary distribution / switching of the power between EL and UL
by mechanical re-tuning of the diplexer   

(no significant power loss; gyrotrons keep operating during switching) 

• efficient AC-stabilization of NTMs as soon as a mode occurs: 

voltage of synchronous modulation starts, ∆U ≈ few kV 

diplexers are tracked such that ∆f results in max ∆P at the outputs for ULs, 

asynchronous power is still available at the EL for independent tasks

• if (at a later stage) more gyrotrons are added: feed into the second inputs. 
efficient AC-stabilization of NTMs with diplexer as fast switch and combiner    
both gyrotrons are modulated with ∆fS, diplexer is tracked that fA,O = f2. 

Insertion of diplexers near to the gyrotrons:

• between launchers and loads, allowing gyrotrons in hot stand-by

• power combination from two 1-MW gyrotrons on a common transmission 
line in case of a power upgrade at a later stage. 

UL

EL



Tw o-loop diplexers in large ECRH system
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Compact quasi-optical diplexer for ECRH on ASDEX Upgrade

Design and construction of a 
compact, closed q.o. diplexer

- compatible with ECRH on ASDEX Upgrade:

- connection for HE11 waveguide, Ø 87 mm

- HE11 – TEM00 – converters at in- and outputs

- control of resonator length

Application in the new ECRH 
system on ASDEX Upgrade

- low-power test (possibly high-power test at W7-X)

- Integration in the ECRH system

- Experiments planned:

• synchronous NTM stabilization using the  
symmetric launchers

• in-line ECE 

(Sat, 10:00  H25  W.A. Bongers, FOM, et al.,  )

mirror
of 
resonator coupling

grating

HE11-TEM00 converter

focusing 
bend

IN 1
IN 2

OUT 1    
OUT 2



Comparison of various diplexers

162 W/cm26.1 %10 mSquare w.guide
angular Talbot

Length due to   
a = 120 mm!! 

162 W/cm28.0 %34 mSquare w.guide
spatial Talbot

Loss mainly in 
sq. waveguide

300 W/cm2   ?9.5 %5 mtwo-loop wg. 
resonator

needs waist
size
w0 > 25 mm

> 630 W/cm2

(gain 3.9)

5.3 %1 – 5 m

(depends on  
coupling)

q.o ring 
resonator

Remarksthermal load

max., 0.5E+0.5H

for 1 MW input

Insertion loss

averaged for 
output 1, 2

Length

incl. coupling

Type 

of diplexer

Frequency:  170 GHz,

(equivalent input waveguides D = 63.5 mm / a = 60mm

note: q.o. two-beam interferometers not investigated up to now


