Development in Russia of 170 GHz Gyrotron for ITER

Institute of Applied Physics, Nizhny Novgorod, Russia GYCOM Ltd., Nizhny Novgorod, Russia Nuclear Fusion Institute, Kurchatov Institute", Moscow, Russia

presented by G.G.Denisov

Russian gyrotrons for plasma setups

~5 / year. 2009: China-3, Russia-2, Germany, Spain

ITER gyrotron parameters and 170GHz/1MW gyrotron design

≻Test facilities

Long-pulse test of ITER gyrotrons: 09; 10a, 10b;

>170 GHz/1.5 MW gyrotron mock-up: Short-pulse test results

Multi-frequency gyrotrons

➤Conclusions

Development in Russia of 170 GHz Gyrotron for ITER

ITER Gyrotron Design / ITER09

- **<u>Depressed-collector</u>** with longitudinal beam sweeping
- Output windows:
 - o 88(106)-mm CVD diamond <u>main window</u>
 - o 123-mm BN relief window
- **<u>Built-in quasi-optical converter</u>** with adjustable last mirror
- **<u>DC break insulator</u>** placed above cryomagnet
- <u>Cavity</u> designed for TE_{25.10.1} mode operation
- **<u>Diode type electron gun</u>** designed for current up to 50A
- <u>All inner surfaces</u> are fabricated from copper
- and have adequate water cooling for CW operation
- Magnet bore diameter 160 mm => gyrotron tube 2.7 m/300 kg

Several modifications of the ITER gyrotron were fabricated and tested (development since 10 years)

Development in Russia of 170 GHz Gyrotron for ITER

Test facilities: Capability of present and future test facilities

Test facility	Pulse duration	Main power supply voltage/current	Transmission line
Previous Kurchatov Institute	≤ 300s	≤ 50kV / ≤ 50A	Mirror transmission line & terminal load at atmospheric pressure
Present	CW	≤ 80kV / ≤	Evacuated waveguide &
Kurchatov Institute*		50A	terminal load
Factory test	CW	≤ 70kV / ≤ 24A	Evacuated waveguide &
GYCOM Ltd.**	3 sec	90kV / 40 A	terminal load

* Start of operation – March 2009** Start of operation - October 2008

Development in Russia of 170 GHz Gyrotron for ITER

Test facilities: Outline of previous test stand at Kurchatov Institute

Development in Russia of 170 GHz Gyrotron for ITER

Previous test stand: Summary of experimental results

Beam voltage kV	Beam current A	Cathode voltage kV	Output power** kW	Total efficiency (CPD) %	Attained pulse length / limitation sec
70.5	25	46	520	~45*	300/ Power supply
76	36	48	830	~48*	203/ Load arcing
76	43	48	1050	~52	116/ MOU arcing
* n **]	ot optimized paraxial part of o	output radia	tion Nee	ed modificati	on => done in 2009

IAP RAS GYCOM 🐰 INF **Development in Russia of 170 GHz Gyrotron for ITER** New evacuated HE₁₁ transmission line /load since March 2009 38 28 2 38

First months of new stand use showed very reliable and comfortable operation of the stand (so far 0.65MW/800 sec, 1.05 MW/200 sec)

IAP RAS GYCOM INF Development in Russia of 170 GHz Gyrotron for ITER

Kurchatov Institute test stand. Evacuated HE₁₁ transmission line /load

Вариант

С

малой"н

Development in Russia of 170 GHz Gyrotron for ITER

Evacuated transmission line. Gyrotron/MOU flange.

Development in Russia of 170 GHz Gyrotron for ITER

Evacuated transmission line. Miter bend with bi-directional couplers.

Development in Russia of 170 GHz Gyrotron for ITER

Long-pulse test: Air forced cooling of DC-break ceramic insulator

Development in Russia of 170 GHz Gyrotron for ITER

One more stop in 2009:

Window failure due to multiple pumping out/backing out procedures. The disc used for 5 years.

Element6 disc, Culham Al bonding

Development in Russia of 170 GHz Gyrotron for ITER

Development in Russia of 170 GHz Gyrotron for ITER

New gyrotron ITER10/a

(with a new window and liquid insulator cooling)

in the test bench.

Tests restart – March 2010

LHe-free magnet is used (Cryomagnetics Inc., USA).

Development in Russia of 170 GHz Gyrotron for ITER

Gyrotron ITER 10a. Power measured at 300 mm from the window (0.1 sec)

Development in Russia of 170 GHz Gyrotron for ITER

Gyrotron ITER/10a. Frequency drift in 9 sec pulse

Development in Russia of 170 GHz Gyrotron for ITER

Gyrotron ITER/10b in the test bench at Nizhny Novgorod

Series 6 pulses 400 kW/ 300 sec+300sec pause/ 45+25 kV/18 A/50%/ 7ma.

Development in Russia of 170 GHz Gyrotron for ITER

Gyrotron ITER/10b. Ceramics temperature – air cooling.

Остывание изолятора. 25.02.10 16:30:11 350 kW ▲Температура, «С 140 130 120 110 100 90 80‡ 70] 60Ŧ 50 40 30 20 10 ремя, с 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260

Development in Russia of 170 GHz Gyrotron for ITER

170 GHz/1.5 MW gyrotron: Design parameters

Frequency	170 GHz
Nominal RF Power	1.5 MW
RF Output Efficiency	> 45 %
Accelerating Voltage	95 - 100 kV
Depression Voltage	35-40 kV
Beam Current	50 - 60 A
Cavity	cylindrical TE _{28.12}
Cavity magnetic field	< 7 T
Pulse duration	1000 s
Depressed Collector	single stage
Window	Diamond (CVD)
Output radiation	TEM 00 Gaussian

Development in Russia of 170 GHz Gyrotron for ITER

Some features of TE28.12 gyrotron

Development in Russia of 170 GHz Gyrotron for ITER

IAP RAS 🜀 GYCOM 🐰 INF **Development in Russia of 170 GHz Gyrotron for ITER** 170 GHz/1.5 MW gyrotron: 50-100 μsec-pulse test results 2.2 2.0 1.0 TE28.12 170GHz TE28.12 170GHz R_{0.opt}=8.265mm 1.9 - $U_0 = 100 \text{kV} R_0 = 8.127 \text{mm}$ 2.0 1.0 $U_0 = 100 \text{kV} \quad I_b = 50 \text{A}$ 0.9 1.8-Р $U_0 = 95 \text{kV} R_0 = 8.127 \text{mm}$ $R_0 = 8.127$ mm g = 1.2101.71.8 0.9 0.8 Efficiency $R_0 = 8.243 \text{mm} g = 1.142$ 00 1.6 P (NW) & Pitch Factor $R_0 = 8.300 \text{mm}$ g=1.096 1.5 0.8 1.6 1.4 Output Power P (MW) 1.3 1.4 0.7 g 1.2 0.6 8 Efficiency n 0.5 Beam 1.1 -0.6 1.2 1.0 0.9 1.0 0.5 Curren 0.8 TE-26.1. 0.4 **Output Power** 0.4 0.7 0.8 0.3 **100** (A) η 0.6 **TE+29.1**2 0.3 0.6 0.5 0.4 ·ŤE+29.12 0.2 0.4 0.3 0.2 0.1 0.2 -0.10.1 0.0 +-0.00.0 -0.0 75 80 85 90 95 100 105 20 30 40 50 60 10 Accelerating Voltage U_0 (**kV**) Beam Current I (A)

Development in Russia of 170 GHz Gyrotron for ITER

<i>L</i> window- calorimeter	Diff. losses IAP Model-2009	28.12	L window- calorimeter	Diff. losses GYCOM_170M2-2010
<i>L</i> =0 мм	<i>P</i> =1583 kW (100%)	gyrotron	<i>L</i> =0 мм	<i>P</i> =1422 KW (100%)
<i>L</i> =300 мм	- 0.7% (99.3%)	0,	<i>L</i> =300 мм	- 1.4% (98.6%)
<i>L</i> =600 мм	- 1.1% (98.9%)		<i>L</i> =600 мм	- 1.7% (98.3%)

Some of MW power level gyrotrons developed and tested in 2005-2009

Frequency, GHz	Power	Pulse, sec	Note	
Two- and multi-frequency gyrotrons				
105 / 140	0.7 - 0.9 MW	10	2 tubes delivered to ASDEX-Upgrade	
147 / 170	0.8/1.0 MW	0.1	CW design, 50% eff	
100-150	1.2-1.5 MW	10-4	Short –pulse mock-up, 6 frequencies, high-eff. converter	
100-150	0.7-0.8	0.1	Short-pulse mock-up, 11 frequencies, BN Brewster window	
105 -140	0.7 – 0.9 MW	0.1 (10)	CW design, 4 frequencies High-eff. mode converter	
71.5 / 74.8 / 78.1	0.8 MW	0.1	3 frequencies, 56% eff. BN Brewster window	

2009/2010 – repair two ASDEX-Upgrade tubes (frozen; vacuum leak)

Multi-frequency gyrotron. Main problems.

- Effective gyrotron operation at different modes
- Effective conversion of all modes into Gaussian beam
- Tuneable or broadband window

Mode converter for multi-frequency gyrotron 1MW/105...140 GHz

137 mm

Waveguide deformation $\Delta R(\varphi, z)$: ±0,31 mm

The new converter was successfully tested at 6 modes (!) in a short pulse gyrotron.

Diffraction losses are less than 2-4% for all modes.

Mode converter launcher Picture shows10 times exaggerated deformation of the waveguide wall

Field patterns in the gyrotron converter (f=140GHz)

IAP RAS GYCOM

- CVD diamond window concepts in consideration:
- Double-disc tunable window (2005-2009)
- Brewster-angle window (2005-2008)

2009 - corrugated matched disc

Propagation of gyrotron radiation through Brewster-kind output window. Protection of mirror supporting structure against reflected cross-polarized radiation

Multi-frequency gyrotron with Brewster output window: The arc which destroyed the diamond disk

Conditioning regime after a frequency change

IAP RAS GYCOM

Frequency, GHz	127
Output power, kW	~ 500
Pulse duration, ms set / actual	13 / 11

Diagnostics showed that during the pulse a disruption of the operating regime to generation of the opposite rotating mode happened

It was one of shocks due to arcing which finally destroyed the window disc with internal strengths.

Safety factor (2 in internal strength) was probably too small for a long time operation

Multi-frequency gyrotron window after the failure

SUMMARY II

Last years a significant progress was demonstrated in development of multi-frequency gyrotrons for fusion:

- Two key problems in development of multi-frequency gyrotrons have been solved:
 - Efficient operation of the gyrotron at several modes/frequencies
 - Efficient quasi-optical conversion of all operating modes into Gaussian wave beam
- Several two- and multi-frequency gyrotrons have been developed and tested at MW power level in the ranges of 70-80 GHz, 100-150 GHz, 140-170 GHz with pulses 0.1 -10 seconds
- Gyrotron efficiency of 50%- 60 % has been shown for industrial tubes
- Design and reliability of multi-frequency gyrotron <u>diamond</u> window is still an issue