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RF diffusion is balanced by

 e/i+e/e pitch-angle      

scattering

 e/e drag (along v)

 e/e diffusion (along v)

Introduction: ECCD physics

+
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v‖

+

 conservation of parallel momentum in collisions of test-electrons with

Maxwellian is mandatory:

RF

v⊥

 Electron Cyclotron Current Drive

+

Fisch-Boozer effect:                            

induced asymmetry of collisionality

Ohkawa effect:                                                     

induced imbalance of passing particles 
ne(v‖ < 0) < ne(v‖ > 0)

v⊥

- -

 different mechanisms are dominating for different plasma parameters:         

careful choice of the model is necessary
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must be in relativistic formulation 

(both resonance and polarization)

Introduction: adjoint approach

 idea: exploiting the self-adjoint properties of Clin(fe) to express CD through the 

response function formally identical to the solution of (generalized) Spitzer-Härm 

problem (Hirshman, 1980; Antonsen & Chu, 1982; Taguchi, 1983)

 current driven by RF source,  

j‖ = -e ∫ du v‖ fe with δfe = fe – FeM and u= v

can be calculated by solving DKE,
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 If solution of the adjoint kinetic eq-n is known,

then with  g(s; u,) = (s; u,)FeM(u)  and   = v||/v

|| 2

0

th

RF

e

ev b
j d

b

  
       

   
 u Γ

u

 Presently, adjoint approach is most common for ray- and beam-tracing
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Adjoint approach: different models

 finite collisionality, b e , i.e. *  1 (barely trapped particles contribute)

 for tokamaks, 3D Fokker-Planck eqn. (Lin-Liu, 1999; Sauter, 1999)

 for stellarators, 4D Spitzer problem has to be solved:                            

to date, no widely accepted approach developed (NEO-2 ?)
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in the analytic theory, two limits are possible,

 classical limit,   b >> e , i.e. * = eR/v  (no trapped particles)

g(s; u,)   g1(u)   

 collisionless limit, b << e , i.e. *  0 (trapped particles exist)

g(s;u,)  g(u,) with =(1-2)/b 

||

0
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e eM

th

vdg
C (g) b F

dt v
   Drift kinetic equation (adjoint):

 1/b

 1/e

ECCD w/o momentum conserv.:  Fisch (1984), Cohen (1987); Lin-Liu (2003)                                ECCD 

with momentum conserv.: Taguchi (1989); Karney (1989); Rome (1997), Marushchenko (2008)

d
v
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  h


(here,                      )
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Collisionless (lmfp) model

Representing the linearized collision operator as

response (Green’s) function, (u,), can be written as (Taguchi, 1989; Lin-Liu, 2003)
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Spitzer function, K(u), is solution of integro-differential eq-n (non-relat.: Taguchi, 1989)

high-speed limit (hsl)

weak.relat: Marushchenko, 2008 

(TRAVIS code)

simplest model of Cohen (1987):       

hsl + magnetic square well (CURBA)

parallel momentum conservation (pmc)
1st Legendre harmonic
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High-speed limit: validity range

 In hsl approach, where  v >> vth, Spitzer problem can be solved analytically 

(Fisch, 1984; Cohen, 1987; Lin-Liu, 2003):
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 hsl approach may be sufficient for plasmas with low and moderate Te

 for the modern devices with hot plasmas – hsl surely not sufficient

low-field-side 

injection

hsl marginally 

applicable

hsl not 

applicable

Fisch-Taguchi

(c  )

0.5; 0.87ce
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N
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
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


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Spitzer function (lmfp-regime): comparison of models

Numerical results for the Spitzer function:

 for mc2/Te  20 (typical for ITER), the relativistic effects are significant

 pmc-solutions significantly larger than hsl-solution (but converge for u >> vth)

 both approximate weakly relativistic and exact fully relativistic pmc-solutions 

coincide well apart from very fast electrons

few models considered:

 non-relativistic pmc-solution 

(Taguchi appr., exact)

 weakly relativ. pmc-solution 

(Taguchi appr.+ polinom. fit):
green_func - solver

 fully relativistic pmc-solution 

(midplane Legendre harm. series): 

SYNCH - solver

 fully relativistic hsl-model   (Taguchi 

appr., analyt. solution)
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Examples: ITER, equatorial launcher

 Scenario 2, O1-mode:    ne(0)= 1020 m-3,  Te(0) = 25 keV,  Zeff(0) = 1.7

Plasma parameters guarantee                                                                                
i) relativistic effects and ii) validity of collisionless limit
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Examples: ITER, equatorial launcher

 Scenario 2, O1-mode:    ne(0)= 1020 m-3,  Te(0) = 25 keV,  Zeff(0) = 1.7

Plasma parameters guarantee                                                                                
i) relativistic effects and ii) validity of collisionless limit

 ECCD calculated by TORAY and TRAVIS in hsl approach coincide well

 both TRAVIS-pmc and CQL3D (FP-pmc) calculations are in a good agreement

 in the main range of interest, hsl significantly underestimates ECCD (10% – 30%)
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Examples: ITER, Prater’s Gedankenexperiment (NF 2008)

 increased B (5.63 T)  absorption near axis, small fraction of trapped particles

 small angle (12.3)  bulk electrons responsible for ECCD, hsl not valid

 ECCD calculated in hsl approach by TRAVIS and other codes coincide well

 both TRAVIS and GENRAY calculations with pmc-models reproduce 

CQL3D Fokker-Planck results with high accuracy (few %)

CQL3D:                                

pmc,      24.00 kA/MW      

no pmc, 15.70 kA/MW

TORAY (Lin-Liu):                       

hsl,         11.62 kA/MW     
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Finite collisionality: qualitative picture

 intermediate regime: barely trapped electrons affect on the current drive

 if Ohkawa effect appears, simplified analytical model of Lin-Liu can be applied

 contribution of barely trapped electrons:

for tokamaks,  j||  (*)1/2 jc

(Chan & Chiu, 1981; Lin-Liu, 1999)

( ) ( )
eff geom b

tr tr tr
f u f f u 

 reduction of drag over trapped fraction           

 as general (but “expensive”) alternative, NEO-2 code can be used

 if no Ohkawa effect, the concept of “effective” trapped particle fraction

can be applied: momentum conservation is important





For ECCD, two factors must be considered

(Maaßberg, 2008)
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banana (barely trapped) solution satisfies to

Spitzer function:  classical + banana solutions

Finite collisionality: simplified analytical model (Lin-Liu, 1999)

 tokamak,  = r/R << 1:   only pitch scattering is accounted, ˆ( )
lin

e
C g L g 

 the model gives qualitative 

picture

 valid only for tokamaks 

with large aspect ratio and 

thin boundary layer        

(i.e. if   j|| << jc)
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Finite collisionality: heuristic model (Maaßberg, 2008)

 for arbitrary *, “effective trapped fraction” can be estimated (heuristically) from 

the mono-energetic conductivity D33(*) (DKES solver)
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W7-X stellarator

equivalent tokamak

“generalized” Spitzer problem for the global collisional response:

(with pmc)
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Finite collisionality: heuristic model (Maaßberg, 2008)

 application for ECCD (with TRAVIS)

 W7X “standard” config.: Te - scan = collisionality scan

 X2-mode: fixed direction, fixed spatial point (B = Bmax)  no Ohkawa effect

 concept of “effective” trapped particles fraction applicable

 covers well transition from 

classical to collisionless regime

 applicable for both tokamaks 

and stellarators

 critical only for scenarios with 

well pronounced Ohkawa effect 

 both simplified analytical and advanced numerical models are necessary
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In kinetic transport theory, series in associated Laguerre polynomials 

of order 3/2 series is applied

Finite collisionality: NEO-2 code

 NEO-2 solves generalized Spitzer problem by field-line-tracing technique
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full version of NEO-2 only for tokamaks is tested (4D  system of 2D) 

( , ) ( , , ) ( , )
m m m

          r

 Corresponding regimes:

Pfirsch-Schlüter;  plateau;  banana regime;  deep banana regime

 Good convergence to asymptotic limits

 Interesting results due to combination of

 magnetic mirroring force

 collisional detrapping

(for stellarators, the mono-energetic version was successfully benchmarked)
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Finite collisionality: NEO-2 code, examples

 circular tokamak with  = r / R = 0.25

 plasma parameters:                                                   
ne = 6.651019 m-3,  Te = 1 keV,  Zeff = 1

 four points:  max & min of B, top & bottom

min B top & bottom max B

Local pitch-dependence of the generalized Spitzer function, 

calculated by NEO-2, (u=vth, ):

 top / bottom asymmetry: disappears for both classical and collisionless limits

 physical reason: collisional detrapping of barely trapped electrons

 predicted by Helander & Catto (2001) through the simplified analyt. model
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ECCD with finite collisionality: TRAVIS + NEO-2

 minB: pronounced interplay of collisional effects with the Ohkawa effect

 maxB: increased integral contribution of the barely trapped particles             
(due to parallel momentum conservation)

1ce
n




 circular tokamak with  = r / R = 0.25

 plasma parameters:  ne = 6.651019 m-3,  Te = 1 keV,  Zeff = 1

 X2-mode: toroidal angle scan for minB & maxB points

 B chosen to have Ohkawa effect:   
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Conclusions and outlook

 Physics of ECCD and the relevant approaches for calculations of efficiency 

are analyzed

 The dominating role of parallel momentum conservation in the like-particle 

collisions is well illuminated (hsl-model is not sufficiently accurate)

 Numerical models with parallel momentum conservation developed for high 
temperature (relativistic) plasmas are already implemented in TRAVIS and 

GENRAY codes

 Ray-tracing calculations for ITER plasma with new solvers benchmarked 
against the Fokker-Planck code CQL3D:  agreement is satisfactory

 Recently developed fast and accurate solvers are well benchmarked and 

can be recommended for implementation in all beam- & ray-tracing codes
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Conclusions and outlook

 The role of collisional effects is demonstrated.  

It’s of special interest for high density and moderate temperature plasmas in 

stellarators

 For some scenarios, simplified analytical and heuristic models can be well 

applicable. Work in this direction is very desirable

 Further development of the NEO-2 code promises the powerful tool for 

accurate study of new physics and benchmarking the simplified models

Thanks for your attention


