Electron Bernstein Experiments at the WEGA Stellarator

H. Laqua, E. Chlechowitz, M. Glaubitz S. Marsen, M. Otte, T. Stange, D. Zhang, WEGA-team Max-Planck-Institut für Plasmaphysik, EURATOM Ass. Greifswald, Germany

J. Preinhaelter, J. Urban

EURATOM/IPP.CR Association, 182 00 Prague, Czech Republic *

in the EC-16 Workshop Sanya, China

and the state of the second second

- Electrostatic waves, no density limit.
 - Heating and current drive in overdense plasmas.
- Plasma is optically thick for EBW's even at low temperature (<10 eV).
- Interesting physics
 - Mode conversion (OXB)
 - Wave propagation
 - Phase space interaction (current drive, fast electrons)

Outline

- Introduction
- WEGA and the 28 GHz ECRH system
- OXB heating experiments
- Electron Bernstein wave emission
- Current drive experiments
- Summary and conclusion

OXB Mode Conversion Process

Requires:

- 1. O-wave launched with θ_{opt} in respect to the magnetic field vector.
 - correct polarisation
 - angular window width ~ $1/k_0L_n$
- 2. Density above cutoff density.
- 3. Existence of UHR ($\omega > \omega_c$)

Ray tracing calculations

WEGA Stellarator

Vacuum vessel:

- Two half-tori with R = 72cm, r = 19cm
- 100 ports (max. diameter of 92mm)

Magnetic field:

- 40 toroidal and 4 helical (I=2, m=5) coils
- · Vertical field and error field compensation coils

Plasma radius / volume:

- $a_{max} = 11 \text{ cm}$, $V = 0.16 \text{ m}^3$ (limiter configuration)
- a ≤5cm (high iota configuration)

Plasma heating:

- 20 + 6 kW magnetrons @ 2.45 GHz (cw)
- 10 kW gyrotron @ 28 GHz (cw)
- OH transformer with 0.44 Vs, tokamak operation possible.

Working gas:

• He, Ar and H_2

Typical pulse length >20s !!! No toroidal currents needed for confinement! No MHD density limit in stellarators.

28 GHz ECRH System

28 GHz Diagnostics

Directional coupler for forward and backward power. calibration by calorimetric load.

Sniffer probe for ECRH stray radiation (OXB conversion efficiency)

ECE receiver (12 Channel: 22.8-39.6 GHz) Spectrum analyzer <40 GHz

Horn antennas in perpendicular and oblique direction

OXB-Transition at 0.48 T

9

Temporal Development of OXB-Transition

Transition develops at the EC-resonace at high field side. Very fast overdense plasma expansion within 0.2 ms. For comparison plasma build-up needs 20 ms.

Cyclotron Emission

Prove of principle experiment with oblique horn

EBE Radiation Spectrum

Confirmation of Supra-Thermal Electrons by X-Ray Measurement

15

Current Drive Ray-Tracing Calculations

16

Doppler Down Shift

Variation of central magnetic field strength

Current Drive Experiments

Only 14 A current measured No difference between symmetric and tilted launch position

High resistivity measured by inductive current drive No acceleration of central supra-thermal particles

Why do we do not see predicted current?

Suggestion: High neutral He pressure prohibits total ionisation Inelastic collisions prevent generation of run-away electrons.

Pressure Limit for RF-Current Drive

LH current drive efficiency vs. He pressure

But for 28 GHz OXB-heating needs 8 10¹⁹m⁻³ !

Summary

WEGA has reached a new unexplored physics regime!

- Stationary overdense plasma heated by 28 GHz OXB mode conversion exclusively.
- Detailed investigation of OX conversion
 - Angular window.
 - Fast overdense plasma build-up.
- Strong Doppler down shift detected.
- Supra-thermal EBE Radiation detected.
- Fast electron population confirmed by X-rays detector
- Current drive much below ray-tracing prediction.
 (inelatic collisions)

Outlook

- 1T operation (first harmonic OXB).
- Reduction of He-pressure by gas jet.
- Quasi-optical EBE-antennas.
- High resolution X-ray detectors.

Thank you for your attention

Power Balance

