

Feedback control of tearing modes through ECRH with launcher mirror steering and power modulation using a line-of-sight ECE diagnostic

Bart Hennen, Egbert Westerhof, Pieter Nuij, Marco de Baar, Waldo Bongers, Andreas Bürger, Hans Oosterbeek, David Thoen, Maarten Steinbuch and the TEXTOR team

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

iter-n

▼ 元 法

显

Goal:

Establish a real-time tearing mode control system

- Localized ECRH/ECCD applied for stabilization and suppression:
 - Fast & accurate mode detection
 - Align ECRH/ECCD power deposition w.r.t. mode centre ("tracking")
 - Modulate ECRH/ECCD power synchronously with mode rotation (1 Hz 5 kHz)
- Why real-time feedback control ?

guarantees fast and accurate alignment (100 ms, 1-2 cm), disturbance rejection, robustness and stability

TU

- In general, tearing mode control systems use:
 - Mapping between ECRH/ECCD actuator & diagnostics
 - Equilibrium reconstruction/estimation + beam tracing codes in feedback loop

- In general, tearing mode control systems use:
 - Mapping between ECRH/ECCD actuator & diagnostics
 - Equilibrium reconstruction/estimation + beam tracing codes in feedback loop

- Disadvantages:
 - Mapping introduces errors in control loop
 - Accurate calibration of actuator & sensor orientation required

无法

显

(loss of orientation = loss of control)

- In general, tearing mode control systems use:
 - Mapping between ECRH/ECCD actuator & diagnostics
 - Equilibrium reconstruction/estimation + beam tracing codes in feedback loop

- Disadvantages:
 - Mapping introduces errors in control loop
 - Accurate calibration of actuator & sensor orientation required

无法

显

(loss of orientation = loss of control)

- Alternative: "line-of-sight principle"
 - \rightarrow Use ECE diagnostic as feedback sensor in sight-line of ECRH/ECCD beam

- Alternative: "line-of-sight principle"
 - \rightarrow Use ECE diagnostic as feedback sensor in sight-line of ECRH/ECCD beam

× 无法

显

FOM

iter-n

- Advantages:
 - Actuator and sensor are always aligned (refractive properties identical)
 - Guarantees tearing mode control even when launcher orientation is perturbed or calibration is lost
 - Sensor is placed 'far away' from plasma (single access port needed)

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

- Alternative: "line-of-sight principle"
 - \rightarrow Use ECE diagnostic as feedback sensor in sight-line of ECRH/ECCD beam

- Implementation in quasi-optical ECRH/ECCD transmission line on TEXTOR:
 - Radiometer: 6 channels, 132.5-147.5 GHz, 3 GHz spacing ~ 3 cm radial spacing
 - Frequency selective directional couplers separate **ECE** from **ECRH/ECCD**

(nW power versus MW power)

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

Experimental instrumentation

- TEXTOR (R = 1.75 m, a = 0.46 m)
- <u>Dynamic Ergodic Divertor (perturbation field)</u>
- Gyrotron 140 GHz, 1 MW, 10 s
- Bi-directional, steerable launcher (tor. & pol.)
- Line-of-sight ECE diagnostic
- National Instruments DAQ & RT control system

(Labview based, DAQ & Field Programmable Gate Array: sampling rate 100 kHz)

无法

FOM

XTOR FZ Jülich

Eindhoven

University of Technology

iter-nl

FOM

ULICH

FORSCHUNGSZENTRUM

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

Real time tearing mode detection from correlation between ECE fluctuations (algorithm implemented on FPGA):

"Compute normalized correlation between ECE channels and apply weighted average over all possible channel combinations"

Real time tearing mode detection from correlation between ECE fluctuations (algorithm implemented on FPGA):

"Compute normalized correlation between ECE channels and apply weighted average over all possible channel combinations"

Channel pair with 180° phase reversal
=
$$f_{EC, tearing mode}$$
 GHz

"Mode location is resolved in real-time as frequency $f_{EC, tearing mode}$ GHz in ECE spectrum using weighted ECE correlations"

无法

显

Real time tearing mode detection from correlation between ECE fluctuations (algorithm implemented on FPGA):

"Compute normalized correlation between ECE channels and apply weighted average over all possible channel combinations"

"Mode location is resolved in real-time as frequency $f_{EC, tearing mode}$ GHz in ECE spectrum using weighted ECE correlations"

无法

显

Real-time tearing mode identification (Example)

In 2/1 magnetic island location determined from ECE during a launcher scan

☑ Alignment of ECRH deposition with magnetic island in feedback loop:

Match actuator frequency of 140 GHz with $f_{EC, magnetic island}$ GHz through launcher steering (elevation angle θ)

University of Technology

× 无 法

显

Real-time control loop

Launcher control loop

- Analysis launcher dynamics using Frequency Response Function measurement *H*_{launcher}(s)

Real-time control loop

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - C_{launcher}(s) = PID controller + lead/lag + low-pass filter

× 无 法 显

Real-time control loop

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - C_{launcher}(s) = PID controller + lead/lag + low-pass filter
 - Feed-forward for friction compensation

尤法

显

Real-time control loop

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - C_{launcher}(s) = PID controller + lead/lag + low-pass filter
 - Feed-forward for friction compensation

Real-time control loop

- Launcher control loop
 - Analysis launcher dynamics using Frequency Response Function measurement $H_{launcher}(s)$
 - Controller designed using "loop-shaping" in frequency domain
 - $C_{launcher}(s) = PID$ controller + lead/lag + low-pass filter
 - Feed-forward for friction compensation

Performance:

- Response: $\theta = \pm 30^{\circ}$ in 100 ms
- Max. steady-state positioning error: 0.6°

无法

显

Real-time control loop

Tearing mode "tracking" loop

Technische Universiteit **Eindhoven** University of Technology ▶ 无法显

FOM

iter-nl

ÜLICH

FORSCHUNGSZENTRUM

Real-time control loop

Tearing mode "tracking" loop

Technische Universiteit

University of Technology

Eindhoven

➤ 无法显

FOM

iter-nl

ÜLICH

ORSCHUNGSZENTRUM

clock rate identification algorithm on FPGA: 16 µs

Real-time control loop

- Tearing mode "tracking" loop
 - Minimize error: e = 140 $f_{EC, \text{ tearing mode}}$ [GHz]

University of Technology

clock rate identification algorithm on FPGA: 16 µs

无法显

2/1 tearing mode <u>search-and-suppress</u>

Technische Universiteit

University of Technology

Eindhoven

•
$$\theta_{initial} = 5^{\circ}$$

• $B_t = 2.25 T$
• $L_r = 300 \text{ kA}$

Continuous ECRH/ECCD 200 kW 1 sec.

- DED triggered
 m/n = 2/1 mode
- Controller active from t = 2-4 sec.
- Automatic trigger gyrotron

iter-nl

× 无 法 显

FOM

11

Eindhoven

University of Technology

iter-nl

FOM

显

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

2/1 tearing mode <u>complete suppression</u>

Fechnische Universiteit

University of Technology

Eindhoven

× 无 法 显

FOM

iter-nl

Experimental Results (3) - Intermezzo

Next: Tearing mode tracking experiment

Ramp in toroidal magnetic field B_t

Mimic change in tearing mode location

Experimental Results (3) - Intermezzo

Next: Tearing mode tracking experiment

Ramp in toroidal magnetic field B_t \rightarrow Mimic change in tearing mode location (ECRH/ECCD deposition location and r_s perturbed)

2/1 tearing mode tracking experiment

Eindhoven

University of Technology

iter-n

FOM

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

14

Real-time control loop

<u>Phase Locked Loop</u> (synchronous ECRH/ECCD modulation on O-point)

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz) - Monitor tearing mode's frequency and phase

➤ 无法显

FOM

iter-nl

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China TU/e Technische Universiteit Eindhoven University of Technology

Real-time control loop

<u>Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)</u>

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz) Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

iter-n

Real-time control loop

<u>Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)</u>

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz) Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

> ▼ 元 法

显

FOM

iter-n

PLL: bandwidth: 150 Hz, operational domain: 300 Hz - 5 kHz

Real-time control loop

<u>Phase Locked Loop (synchronous ECRH/ECCD modulation on O-point)</u>

Input PLL:

Line-of-sight ECE signal (e.g. 2nd channel: 135.5 GHz) Output PLL:

Block-wave with controlled frequency & phase (maintains 90° phase difference relative to 1st harmonic of noisy ECE input signal)

> ▼ 元 法

显

FOM

iter-n

Note: focus on O-point by adding constant phase shift $\Delta \phi$

TU/e Technische Universiteit Eindhoven University of Technology

Experimental Results (5)

Synchronous ECRH/ECCD modulation on O-point

Technische Universiteit **Eindhoven** University of Technology

iter-nl

Synchronous ECRH/ECCD modulation on O-point

direction) 600 kW

iter-nl

ULICH

ORSCHUNGSZENTRUM

Synchronous ECRH/ECCD modulation on O-point

Technische Universiteit **Eindhoven** University of Technology ▼ 无 法

显

FOM

17

Synchronous ECRH/ECCD modulation on O-point

Synchronous ECRH/ECCD modulation on O-point

e

Synchronous ECRH/ECCD modulation on O-point

ÜLICH

FORSCHUNGSZENTRUM

▼ 无 法

显

FOM

iter-nl

Technische Universiteit **Eindhoven** University of Technology

TU/e

Synchronous ECRH/ECCD modulation on O-point

17

 Feedback stabilization of tearing modes realized in TEXTOR using a real-time tearing mode control system

in particular:

Line-of-sight ECE applied as feedback sensor in control loop with steer-able launcher and gyrotron as actuators
 Algorithm for real-time detection of tearing modes implemented and demonstrated experimentally
 Launcher dynamics analyzed and optimized through controller design (FB + FF)
 ECRH/ECCD deposition aligned w.r.t. mode by matching actuator and sensor frequency in feedback loop (through launcher steering)

18

× 无 法

显

Feedback stabilization of tearing modes realized in TEXTOR using a real-time tearing mode control system

in particular:

Alignment achieved accurately and fast with a simple controller ✓ Tearing mode search-and-suppress demonstrated experimentally (both stabilization and full suppression achieved) ✓ Tracking capabilities control system demonstrated experimentally (subject to Bt ramp; mimic perturbation on tearing mode location) Synchronous ECRH/ECCD modulation on O-point of tearing mode using phase locked loop demonstrated experimentally

• Future developments:

Implement "Line-of-sight ECE" in waveguide environment (long pulse operation)
 Design of advanced controllers (model-based, including tearing mode dynamics)
 Increase number of radiometer channels (enhanced mode identification)
 Full control over tearing mode's width

Open questions:

20

- How to deal with locked modes ?
- How to predict mode occurrence in advance ? (precursors ?)
- How to deal with multiple coupled modes ?

Thanks for your attention !

Further info \rightarrow B.A. Hennen et al., Plasma Phys. Control. Fusion (to appear June 2010)

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

▶ 无法显三

Fast tearing mode detection from correlation between ECE

fluctuations (algorithm implemented on FPGA 100 kHz sampling rate):

1. Subtract running average (over 256 data points ~ 2.56 ms)

$$\bar{x}_a(i) = x_a(i) - \frac{1}{N_{av}} \sum_{j=0}^{N_{av}-1} x_a(i-j), \qquad N_{av} = 256 \text{ data points } (\sim 2.56 \text{ ms})$$

ECE signal $x_a(i)$ $(a = 1...6)$

- 2. Normalize and correlate by multiplying all possible channel pairs
- 3. Compute running sum over 200 data points for each result

$$c_{a,b}(i) = \sum_{j=0}^{N_{corr}-1} \frac{\bar{x}_a(i-j)\bar{x}_b(i-j)}{|\bar{x}_a(i-j)\bar{x}_b(i-j)|}.$$
 $N_{corr} = 200$
ECE channels $\bar{x}_a(i)$ and $\bar{x}_b(i)$

4. Find channel pairs for which correlator is negative and below

chreshold (= -100)

$$C_{a,b}(i) = \begin{cases} 1 & \text{if } c_{a,b}(i) \leq -100, \\ 0 & \text{if } c_{a,b}(i) > -100, \end{cases}$$

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China TU/e Technische Eindhoven University of

无法

显

Fast tearing mode detection from correlation between ECE

fluctuations (algorithm implemented on FPGA 100 kHz sampling rate):

5. Define frequency estimate matrix

 $F = \begin{bmatrix} 132.5 & 134.0 & 135.5 & 137.0 & 138.5 & 140.0 \\ 134.0 & 135.5 & 137.0 & 138.5 & 140.0 & 141.5 \\ 135.5 & 137.0 & 138.5 & 140.0 & 141.5 & 143.0 \\ 137.0 & 138.5 & 140.0 & 141.5 & 143.0 & 144.5 \\ 138.5 & 140.0 & 141.5 & 143.0 & 144.5 & 146.0 \\ 140.0 & 141.5 & 143.0 & 144.5 & 146.0 & 147.5 \end{bmatrix} GHz,$

6. Multiply by median EC frequency $F_{a,b} = \frac{1}{2}(f_{ECE,a} + f_{ECE,b})$ of

corresponding channel pairs

7. Weighted averaging over 15 possible channel pair combinations $f_{EC, \ tearing \ mode}(r_s, i) = \frac{\sum_{a=1}^{5} \sum_{b=a+1}^{6} C_{a,b} F_{a,b} W_{a,b}}{\sum_{a=1}^{5} \sum_{b=a+1}^{6} C_{a,b} W_{a,b}}.$ $W_{a,b} = 2^{5-|a-b|}$ $\rightarrow \text{Result: } f_{\text{EC}, \ tearing \ mode} \ \text{GHz}}$

(Estimate of mode location in the ECE spectrum for a given launcher orientation)

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China

无法显

Real-time tearing mode identification (Example)

16th Joint Workshop on ECE and ECRH April 12 - April 15, 2010, Sanya, China Technische Universiteit **Eindhoven** University of Technology

iter-nl

FOM

ÜLICH

ORSCHUNGSZENTRUM