

Transmission line and its components for ITER ECE diagnostic

Hitesh Kumar B. Pandya¹, Suman Danani¹ and Kaushal Patel²

 ¹Institute for Plasma Research, Bhat, Gandhinagar-382 428
India ²Charotar Institute of Technology, Changa, India hitesh.pandya @iter-india.org pandyahb@gmail.com

- A very low power (~ μW) ECE radiation of wide band frequency (70 to 1000 GHz) is needed to transmit a long distance
- Low loss Transmission line is required
- A circular corrugated waveguide in HE₁₁ mode gives low transmission in wide band
- ✤ HE₁₁ mode can be very efficiently coupled with other optical components.
- The closed waveguides help to avoid atmospheric line absorption.

we propose a possible scheme for the transmission line

- It includes many components like wire grid polarisers, straight jointed sections of waveguide, mitre bends and other optical components
- Each components has transmission loss
- The total loss of the transmission line can be determined

Proposed design

Proposed design (Cont.)

List of required components for proposed transmission line

Components Name	Qnt./line	Total
1.Corrugated waveguide	34 miter	136 miter
2.Mitre bends	6/5 No.	21 No.
3.Polarizer splitter box	1 No.	2 No.
4.Vacuum windows	2 No.	8 No.
5.Pump out units	2/1 No.	6 No.

Table 1 Experimental measurements of the insertion loss of the corrugated waveguide

Corrugated		Frequency	insertion loss	Reference	Remark
waveguide	dimension	(GHz)	(dB/meter)	number	
Diameter	Corrugati				
(mm)	on period				
	(mm)				
63.5	0.254	60/140	0.08/<<0.035	5	
88.9	1.7	84	0.002	6	
63.5	0.45	100 to 300	0.0002	7	For 24 m
					W/G
63.5	0.66	50 to 220	30% for 80meter	8	Include
					mitre
					bends
31.75		110	0.003	9	

2010年4月29日星期四

8

Table 2. The mitre bend insertion losses calculated and measured for HE₁₁ mode

Waveguide	Frequency	Calculated loss	Measured loss	Reference
diameter	(GHz)	(dB)	(dB)	S
(mm)				
12.7	140	0.17	$0.22 / 0.3 \pm 0.1$	11
63.5	170	0.011	0.05±0.02	11
63.5	100 - 300	0.025 - 0.0047	0.06	7
63.5	100 to 350	0.025 - 0.0038	0.25	12

Theoretical insertion loss in the mitre bend can be calculated by following equation

 HE_{11} loss in a mitre bend $\cong 2.4 \left(\frac{\lambda}{D} \right)^{1.5} dB$

* Estimated transmission line loss

Component name	Quantities	Loss (dB)
Corrugated waveguide $(\phi = 88.9 \text{ mm})$	34 meter	0.068
Mitre bend	5/6	1.1/1.32
Pump out unit	1	0.22
Polarizer splitter unit	1	0.175
	Total loss	1.783 (~33%)

It seems that the insertion loss of the mitre bend is higher than all other components

Study of the waveguide gap and mitre bend through gap theory and simulation

- The loss in the mitre bend can be determined by using mode matching technique[11]
- The numerical simulation can also be used
- The mitre bend loss is consider as the insertion loss due to gap in the waveguide

Modeling of the smooth waveguide gap and mitre bend with TE_{01} mode

- The numerical solver HFSS does not able to solve hybrid HE₁₁ mode
- A smooth waveguide propagating TE₀₁ mode is used instead
- Since the gap theory is equally valid for TE₀₁ mode

Model used to simulate TE_{01} mode in smooth waveguide gap

The model used to simulate the TE_{10} mode in mitre bend

Comparison of the loss in waveguide gap and the mitre bend

Power losses (%) for Waveguide gap for the radius of 8.56mm

Summary

- ✤ We proposed a transmission line for ITER ECE radiation
- Indentified required components
- We estimated insertion loss on basis of past measurements
- We deduced that the mitre bend has higher loss than other components
- We studied the mitre bend in more detail by numerical simulation
- We inferred that the insertion loss in the mitre bend is half of the loss in the waveguide gap
- The W/G gap theory can be used to determine the loss in the mitre bend and the pump-out unit or other gap in the transmission line

References :

- 1) DDD_55f_microwave_1.4
- 2) M.E. Austin, R.F. Ellis, A.E. Hubbard, P.E. Phillips, W.L. Rowan, *"Receiver front-end optics and performance assessment for ITER ECE system,"* S006937-F ITER ECE Report (U. Texas). pdf, February 2007,
- 3) David S. Tex, "Mode conversion losses in overmoded millimeter wave transmission lines", M.S. Thesis, MIT-2008
- 4) J. L. Doane, Fusion Scie. Technology, 53, 159 (2008)
- 5) A. Cavallo, J. Doane and R. Cutler, Rev. Sci. Instrum., 61, 2396 (1990)
- 6) K. Ohkubo, S. Kubo et al. Int. J. Infrared Millim. Waves, **15**, 1507 (1994)
- 7) N. Isei, A. Isayama et al. Fusion Eng. and Design, 53, 213 (2001)
- 8) Nagayama Yoshio, Kawahata Kazuo et al. J. Plasma Fusion Res., 78, 601 (2003)
- 9) Shinichi Moriyama*, Masami Seki et al. Fusion Eng. and Design, 74, 343 (2005)
- 10) J. L. Doane and C. P. Moeller, Int. J. Electron., 77, 489 (1994)
- 11) S. T. Han, E. N. Comfoltey et al. Int. J. Infrared Millim. Waves, 29, 1011 (2008)
- 12) Max Austin, Private communication

- Thanks to ITER design office and ITER ECE IO
- Thanks to ITER INDIA design office and Dr. P. Vasu (PM, ITER INDIA Diagnostics)
- Thanks to Space Application Center, Ahmedabad for giving permission to use HFSS
- Thanks to EC-16 organizing committee

Q/As

