

College W&M **Colorado Sch Mines**

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado **U Illinois**

U Maryland

U Rochester

U Wisconsin

U Washington

UCLA

UCSD

CompX

INL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Supported by

An Analytic Fit to the TRANSP Energetic Particle **Distribution Function for NSTX**

Jack Berkery

Department of Applied Physics, Columbia University, New York, NY, USA

February 19, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Kinetic stabilization of the resistive wall mode is calculated with the MISK code, using:

$$\delta W_K = \frac{2\sqrt{2}\pi^2}{m^{\frac{3}{2}}} \sum_{l=-\infty}^{\infty} \int d\varepsilon \int d\chi \int d\Psi \chi \frac{\hat{\tau}}{B} \frac{(\omega_r + i\gamma)\frac{\partial f}{\partial\varepsilon} + \frac{\partial f}{\partial\Psi}}{\langle\omega_D\rangle + l\omega_b - i\nu_{\text{eff}} + \omega_E - \omega_r - i\gamma} \varepsilon^{\frac{5}{2}} |\langle H/\hat{\varepsilon}\rangle|^2$$

Maxwellian	Isotropic Slowing-down	Actual NSTX E.P.
Thermal ions and electrons	Alpha particles	Beam ions
$f(\varepsilon, \Psi) = n \left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} e^{-\hat{\varepsilon}}$	$f(\varepsilon, \Psi) = \frac{3n_a}{8\sqrt{2}\pi} \left(\ln\left(1 + \hat{\varepsilon}_c^{-\frac{3}{2}}\right) \right)^{-1} \left(\frac{m_a}{\varepsilon_a}\right)^{\frac{3}{2}} \frac{1}{\hat{\varepsilon}^{\frac{3}{2}} + \hat{\varepsilon}_c^{\frac{3}{2}}}$	$f(\varepsilon, \Psi, \chi) = ?$
No problem	Should be fine for alphas. Presently being used for beam ions, despite its limitations.	
() NSTX	NSTX Analytic E.P. Distribution Function (Berkery)	February 19, 2010 2

TRANSP gives out an energetic particle distribution function

- To catch particles on their "home" surfaces we take a vertical slice, rather than a horizontal slice
 - Gorelenkov suggestion
- What we actually get out of TRANSP:
 - $-75 \epsilon \text{ pts} (\text{keV})^{\omega}$
 - $-50 \chi (=v_{||}/v)$
 - pts
 - 10 x (~r/a) pts

Analytic expressions for E.P. f have been derived before

[N.N. Gorelenkov, H.L. Berk, and R.V. Budny, Nucl. Fusion 45, 226 (2005)]

- Physics based
 - Actually more complex than shown above (trapped vs. circulating)
- But, doesn't work for NSTX (I tried it)

⁴

ITER and NSTX cases are quite different

(() NSTX

First idea: χ_0 is ϵ dependent

Second idea: Double Gaussian?

Finding an analytic fit is not an easy process

• My best analytic expression so far is:

$$f(\varepsilon, \Psi, \chi) = \frac{C_0(\Psi(\varepsilon^{C_1(\Psi)}))}{\varepsilon^{C_2(\Psi)} + C_3(\Psi)} \frac{e^{-(\chi - \chi_0(\varepsilon, \Psi))^2 / \delta \chi^2(\varepsilon, \Psi)}}{\sqrt{\delta \chi^2(\varepsilon, \Psi)}}$$

$$\chi_0(\varepsilon,\Psi) = C_4(\Psi) + \frac{C_5(\Psi)}{1 + e^{-C_6(\Psi)(\varepsilon - C_7(\Psi))}}$$

Two major changes:

• "magnitude" term is more generalized • χ_0 is dependent on ϵ (which causes correction to $\delta\chi$ as well)

$$\delta\chi^{2}(\varepsilon,\Psi) = C_{8}(\Psi) - \frac{1}{3}\ln\left[\frac{\varepsilon^{\frac{3}{2}}}{\varepsilon^{\frac{3}{2}} + C_{9}(\Psi)}\right] + C_{10}(\Psi)\left|\chi_{0}(\varepsilon,\Psi) - \chi_{0}(\varepsilon_{\max},\Psi)\right|$$

• Gorelenkov:

$$f(\varepsilon,\Psi,\chi) = \frac{C_0(\Psi)}{\varepsilon^{\frac{3}{2}} + C_1(\Psi)} \frac{e^{-(\chi - \chi_0(\Psi))^2/\delta\chi^2(\varepsilon,\Psi)}}{\sqrt{\delta\chi^2(\varepsilon,\Psi)}} \quad \chi_0(\Psi) = C_2(\Psi) \qquad \delta\chi^2(\varepsilon,\Psi) = C_3(\Psi) - \frac{1}{3}\ln\left[\frac{\varepsilon^{\frac{3}{2}}}{\varepsilon^{\frac{3}{2}} + C_4(\Psi)}\right]$$

Finding an analytic fit is not an easy process

• My best analytic expression so far is:

$$f(\varepsilon, \Psi, \chi) = \frac{C_0(\Psi(\varepsilon^{C_1(\Psi)}))}{\varepsilon^{C_2(\Psi)} + C_3(\Psi)} \frac{e^{-(\chi - \chi_0(\varepsilon, \Psi))^2/\delta\chi^2(\varepsilon, \Psi)}}{\sqrt{\delta\chi^2(\varepsilon, \Psi)}}$$

$$\chi_0(\varepsilon, \Psi) = C_4(\Psi) + \frac{C_5(\Psi)}{1 + e^{-C_6(\Psi)(\varepsilon - C_7(\Psi))}}$$

Two major changes:

• "magnitude" term is more generalized • χ_0 is dependent on ϵ (which causes correction to $\delta\chi$ as well)

$$\delta\chi^{2}(\varepsilon,\Psi) = C_{8}(\Psi) - \frac{1}{3}\ln\left[\frac{\varepsilon^{\frac{3}{2}}}{\varepsilon^{\frac{3}{2}} + C_{9}(\Psi)}\right] + C_{10}(\Psi)\left|\chi_{0}(\varepsilon,\Psi) - \chi_{0}(\varepsilon_{\max},\Psi)\right|$$

- Note:
 - C_0 is a normalization factor so that: $p_a = \int f_a \left(\frac{2}{3}\varepsilon\right) d^3 \mathbf{v}$
 - Otherwise there are <u>ten</u> other $C(\Psi)$ to fit.
 - There is <u>no physics</u> in the constants, they are selected purely to fit the TRANSP output.
 - This is all on the basis of <u>one shot</u> at <u>one time</u> point.

TRANSP output vs. analytic fit

- Does a pretty good job.
 - Not as good at highest and lowest energies.

Looking at the "ridge" gives the Gaussian peak magnitude

() NSTX

NSTX Analytic E.P. Distribution Function (Berkery)

Looking at particular energies shows the Gaussian fits

