

Supported by

Recent Advances in High Harmonic Fast Wave Research on NSTX*

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNI Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U Wisconsin**

Gary Taylor¹

In collaboration with J-W. Ahn², R.E. Bell¹, P.T. Bonoli³, E. Feibush¹, G. Chen², M. Choi⁴, D.L. Green², R.W. Harvey⁵, W.W. Heidbrink⁶, J.C. Hosea¹, E.F. Jaeger², B.P. LeBlanc¹, D. Liu⁷, R. Maingi², C.K. Phillips¹, M. Podesta¹, L. Roquemore¹, P.M. Ryan², E.J. Valeo¹, J.B. Wilgen², J.R. Wilson¹, and the NSTX Team

¹Princeton Plasma Physics Laboratory
 ²Oak Ridge National Laboratory
 ³Massachusetts Institute of Technology
 ⁴General Atomics
 ⁵CompX
 ⁶University of California Irvine
 ⁷University of Wisconsin - Madison

* Work supported by US DoE contract DE-AC02-09CH11466 Presented at the Institute of Plasma Physics Hefei, China, April 7, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Outline

- Introduction to NSTX & the HHFW Research Program
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - Significant RF interaction with NBI fast-ions
- RF interaction with plasma edge, ELMs & divertor
 - Direct RF power flow to divertor, RF edge heating & clamping
- Recent results with new double end-fed antenna
 - > Increased arc-free power capability, RF H-modes in He & D_2
- Summary

Outline

- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - > Significant RF interaction with NBI fast-ions
- RF interaction with plasma edge, ELMs & divertor
 - > Direct RF power flow to divertor, RF edge heating & clamping
- Recent results with new double end-fed antenna
 - ➢ Increased arc-free power capability, RF H-modes in He & D₂
- Summary

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

HHFW Heating & Current Drive (CD) Developed for Non-Inductive Ramp-up, Bulk Heating & q(0) Control

• Ultimately Spherical Torus needs to run non-inductively

5

HHFW Antenna Has Well Defined Spectrum Ideal for Controlling Deposition, CD Location & Direction

.

Core Heating Efficiency Degrades with Decreasing k_{\u03c0} in He & D₂ L-Mode & D₂ H-Mode Plasmas

Also measure a degradation in core heating efficiency with decreasing k₀ In D₂ H-mode
 J. Hosea, *et al.*, Phys. Plasmas 15, 056104 (2008)

C.K. Phillips, *et al.*, Nucl. Fusion **49**, 075015 (2009)

Strong Single-Pass RF Damping; Edge RF Power Losses Near Antenna Dominate

AORSA: $|E_{RF}|$ field amplitude for $k_{\phi} = -8 \text{ m}^{-1} \& 101 \text{ n}_{\phi} \text{ modes}$

- Maximize RF heating efficiency (η_{eff}) in NBI + HHFW plasmas by understanding & mitigating edge RF losses
 - Important for ICRF on ITER
- η_{eff} degrades when n_e near antenna exceeds critical density (n_{crit}) for perpendicular fast wave propagation
- Li conditioning reduces edge n_e ; moves n_{crit} away from antenna & improves η_{eff}
- Studying RF edge loss in NSTX
 & RF interaction with fast-ions

Outline

- Introduction to NSTX & the HHFW Research Program
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - Significant RF interaction with NBI fast-ions
 - RF interaction with plasma edge, ELMs & divertor
 - > Direct RF power flow to divertor, RF edge heating & clamping
 - Recent results with new double end-fed antenna
 - > Increased arc-free power capability, RF H-modes in He & D_2
 - Summary

Li Evaporators, Li Droppers & Fast IR Cameras Provide New Capability for Controlling & Studying RF Edge Interaction

10

Lithium Wall Conditioning Enabled NSTX Record $T_e(0)$ in He & D₂ in L-Mode with P_{RF}~ 3 MW

Ohmically-Heated Helium Target Plasma Transitions to H-Mode During 2.6 MW HHFW Pulse

12

Ray Tracing Simulation Predicts > 90% of RF Power Deposited on Electrons Inside ρ ~ 0.6

Shot 135260

Broader HHFW power deposition during H-Mode

13

Lithium Wall Conditioning Enabled HHFW Heating of Core Electrons During Early I_p Ramp

Lithium Enabled Significant HHFW Heating of Core Electrons During Some D₂ NBI-Driven H-modes

Ray Tracing Predicts ~ 90% RF Absorption by Electrons During RF + NBI H-Mode

* Rays end when 99.9% of RF power is absorbed

 NBI fast-ion density and effective temperature provided by TRANSP transport analysis of similar NBI-only H-mode

H-mode Initiated & Maintained Through ELMs with $P_{RF} \sim 2.7$ MW During ~ 2 MW D₂ NBI

• Transition to H-mode occurs after RF turn on and without RF arc

Broader RF Power Deposition at Higher k_{\phi} **During RF-Heated NBI H-Mode**

 Strong competition between RF heating of NBI fast-ions and electrons, particularly near magnetic axis

RF Deposition to lons Increases Significantly at Lower k_b During RF-Heated NBI H-Mode

Fast-Ion D_{α} (FIDA) Measurement Shows Significant Interaction Between HHFW and NBI lons

- Large increase in neutron rate during HHFW + NBI plasmas
- FIDA measures significant enhancement & broadening of fast-ion profile when HHFW power is applied to NBI plasma*

*D. Liu *et al.*, Plasma Phys. Control. Fusion **52**, 025006 (2010)

Integration of TORIC Full-Wave Solver into TRANSP Provides New Capability to Model HHFW in NSTX

- TORIC* full-wave solver, that can compute HHFW propagation and absorption in NSTX, now included in TRANSP
- TORIC calculates power deposition into all species, including fast-ions
 - > No RF Monte-Carlo Fokker-Planck operator presently in TRANSP
 - Self-consistent calculation of fast-ions not available for RF-heated NBI plasmas
 - Use CQL3D Fokker-Plank code to estimate neutron rate generated by fast-ions

*M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)

TRANSP/TORIC Modeling Predicts RF Absorption by NBI Fast-Ions Lasts Well After NBI Turn Off

- All rf power absorbed by electrons prior to NBI pulse
- After NBI turn-on, the fast-ion population absorbs HHFW power at the expense of the electrons
 - Trend confirmed by single time point calculations with AORSA, GENRAY and TORIC

RF Power Absorption by Fast-Ions Decreases as Fast-Ions Thermalize During RF-Heated NBI H-Mode

• Electron β increases with time as density rises, increasing RF heating on electrons

CQL3D Simulation Predicts ~ 40% of RF Antenna Power Coupled to Plasma for k_{ϕ} = -13 m⁻¹ Heating

• P_{rf} used in CQL3D modeling reduced to match simulated and measured neutron rate $k_{h} = -13 \text{ m}^{-1}$

Outline

- Introduction to NSTX & the HHFW Research Program
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - Significant RF interaction with NBI fast-ions
- RF interaction with plasma edge, ELMs & divertor
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Recent results with new double end-fed antenna
 - ➢ Increased arc-free power capability, RF H-modes in He & D₂
 - Summary

1-D Full Wave Model Predicts P_{RF} ~ 100-200 kW Can Drive PDI; P_{RF} Needed to Drive PDI Falls with k_b

 Previously estimated 16 - 23 % RF power lost to PDI, through collisional coupling of energetic ions to edge electrons*

*T. Biewer *et al.*, Phys. Plasmas **12**, 056108 (2005)

Toroidal Edge Rotation Appears to Lock During RF, Especially at Lower k₆

- Mechanism not understood, but may point to edge ion loss
- RF apparently provides a drag on core plasma rotation as well

Large Type 1 ELM Often Follows HHFW Power Turn-off or Arc During D₂ H-Modes

- Strong edge pressure gradient appears to lead to ELM
- Arcs occur prior to excursion of D_{α} light
- Similar behavior observed for k_o = -8 m⁻¹ heating

Particle Eruptions from Antenna, Observed with Visible Cameras, Sometimes Result in Antenna Arcs

Visible & IR Images Show Significant RF Power Flows to Divertor, Particularly for Lower k_o Heating

Summary Results & Plans for HHFW Coupling & Heating in H-mode Plasmas During ELMs

- Plasma conditioning of antenna to high power is required to avoid antenna arcs
 - Sputtering appears to be the cause of the arcs observed previously in ELM-free case
- Arc produces faster change in reflected power signal than ELMs

Electronic ELM/arc discrimination system to be tested in 2010

- Edge losses are larger when ELMs are present
- Divertor RF heat pattern depends strongly on magnetic field pitch
- Effect of ELMs on HHFW edge heating will be quantified in experiments later this year

Hefei IPP Presentation – Recent Advances in HHFW Research on NSTX (Taylor)

April 7, 2010

32

Outline

- Introduction to NSTX & the HHFW Research Program
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - > Significant RF interaction with NBI fast-ions
- RF interaction with plasma edge, ELMs & divertor
 - > Direct RF power flow to divertor, RF edge heating & clamping
- Recent results with new double end-fed antenna
 - > Increased arc-free power capability, RF H-modes in He & D_2
 - Summary

Double End-Fed Upgrade Installed for 2009 Campaign Shifts Ground from End to Strap Center

- Goal was to bring system voltage limit with plasma (~15 kV) up to its vacuum limit (~25 kV):
 - Would increase power limit by ~ 2.8 times
- Tests whether electric field in strap/Faraday shield sets
 limit for plasma operation

Transmission Line Modifications

HHFW System Upgrades Completed by June 2009

12 new double-fed antenna straps were installed inside NSTX

- In-vessel strap upgrades completed in December 2008
- External transmission line upgrades completed in June 2009
- Operated RF into plasma July & August 2008

Approximately 60 m of additional $\lambda/2$ loops were installed outside NSTX

Double End-Fed Antenna Performance Significantly Improved in 2009 Compared to 2008 Operation

- New antenna reached 2-3 MW more quickly than in past
 - > No substantial increase in system voltage limit during initial operation
 - Vacuum & plasma conditioning increased power levels throughout initial run, removed Li coatings from antenna
 - Currents flowing on antenna frame/Faraday shield may determine arcing threshold
- Coupled > 4 MW into He L-mode
- Record $T_e(0) \sim 6.2$ keV with $P_{rf} \sim 2.7$ MW
- Allowed study of L-H & H-L transition in He & D with RF
- Extensive RF vacuum & plasma conditioning campaign in 2010 to evaluate new antenna performance

Outline

- Introduction to NSTX & the HHFW Research Program
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
 - > Significant RF interaction with NBI fast-ions
- RF interaction with plasma edge, ELMs & divertor
 - > Direct RF power flow to divertor, RF edge heating & clamping
- Recent results with new double end-fed antenna
 - ➢ Increased arc-free power capability, RF H-modes in He & D₂

• Summary

Summary

- Significant progress in heating NBI H-mode & during early I_p ramp
 - Li reduced edge n_e enabling first core HHFW electron heating during NBI H-mode
 - Coupling maintained through L-H transition and during ELMs
 - Competition between RF acceleration of NBI fast-ions & direct electron heating, particularly at lower k_o
- Fast-wave interaction with the edge & power flow to divertor may be an important RF power loss mechanism, particularly at low k_{φ}
- First operation of the double end-fed antenna has been encouraging

Increased arc-free power capability & produced RF H-modes in He & D₂

In 2010 use upgraded antenna with new liquid lithium divertor to improve coupling in H-modes and during I_p ramp

