

Supported by



### NSTX HHFW Conditioning and Operation with the Upgraded Dual Feed Antenna

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNI Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

J.C. Hosea<sup>1</sup>,

J-W Ahn<sup>2</sup>, R.E. Bell<sup>1</sup>, C. Brunkhorst<sup>1</sup>, S. DePasquale<sup>1</sup>, R. Ellis<sup>1</sup>, E. Fredd<sup>1</sup>. E. Fredrickson<sup>1</sup>, C. Kung<sup>1</sup>, N.
Greenough<sup>1</sup>, B.P. LeBlanc<sup>1</sup>, R. Maingi<sup>2</sup>, C.K. Phillips<sup>1</sup>, L. Roquemore<sup>1</sup>, P.M. Ryan<sup>2</sup>, G. Taylor<sup>1</sup>, K. Tritz<sup>3</sup>, J. Wilgen<sup>2</sup>, J.R. Wilson<sup>1</sup> and the NSTX Team

<sup>1</sup>Princeton Plasma Physics Laboratory, Princeton, NJ, USA <sup>2</sup>Oak Ridge National Laboratory, Oak Ridge, TN, USA <sup>3</sup>Johns Hopkins University, Baltimore, MD, USA



U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Culham Sci Ctr

US-EU-JPN RF Technology Workshop Como, Italy, September 13-15, 2010

## NSTX HHFW conditioning and operation with the upgraded dual feed antenna

### Outline:

- Antenna upgrade
- Conditioning for optimum antenna power capability
- Operation at higher power and with ELMs with upgraded antenna
- Optimization of coupling in the presence of ELMs
  - Reliable detection of arcs in the presence of ELMs

### Antenna Upgrade

- Double end feed of antenna straps
- Maintaining parallel wave-number selectivity with proper decoupling adjustments

### NSTX HHFW antenna has well defined spectrum, ideal for studying dependence of heating on antenna phase



HHFW antenna extends toroidally 90°





- Phase between adjacent straps easily adjusted between 0° to 180°
- Large B pitch affects wave spectrum in plasma core

# Antenna upgraded to have feeds at both ends of current straps in order to increase operating voltage



- 2009 Double-feed upgrade shifts ground from end to strap center.
- Lower strap voltage for a given strap current:
  - Approximately double power per strap for the same plasma load.
  - Permits larger plasma-antenna gap (lower load)

### Electrical lengths set for resonance at 30 MHz – Antenna loop and cube loop between two antennas

Microwave Studio used to predict lengths



Loops made resonant to within ~ 5 kHz to permit good decoupling between sources at cubes



- Antenna loop is one wavelength long to provide continuous current along antenna strap
- Similar configuration to that used on TFTR

### 5 decouplers between adjacent source cubes are adjusted with commercial capacitors



- View of cube feed system looking toward NSTX
- Note that the 12 line antenna system takes considerable space even with mostly 6" lines
- ITER IC matching and decoupling system for 8 line antenna system using 12" lines will fill most of the port cell





### Decoupler capacitor set to minimize coupling between sources 5 and 6 at cubes

- All antenna feed loops grounded except for those connected to cubes 5 and 6
- Feeding 6 gives two peaks prior to changing capacitor
- One 6 peak with correct capacitor setting to counter mutual coupling to 5
  - signal at 5 is 33 dB down



### **Conditioning for optimum antenna power capability**

- Effect of lithium on conditioning
- Expulsion of lithium from antenna surfaces appears to cause arcing ⇒ RF magnetic field limit instead of voltage limit
- Predicted voltage enhancement with upgrade not realized but operation more robust after conditioning – sustained H-mode with RF only

## Ejection of material from antenna surfaces appears to be the cause of the arcs during RF plasma operation







• Lithium sputtering from outside of antenna can cause arcs if material (dust) enters faraday shield enclosure

• RF power is not limited by RF voltage on antenna but the limit appears to be an induced RF current effect – i.e, an RF current limit



### P<sub>RF</sub> up to 3.7 MW sustained after plasma conditioning to high power



- Example shown above for  $P_{RF} = 2.7 \text{ MW} \Rightarrow T_e(0)$  up to 6.2 keV
- RF only H-mode produced near end of RF pulse
- Further conditioning indicated to eliminate the sputtering that persists

# Power and operating voltage increased somewhat with upgraded antenna after conditioning



- Comparable conditions after conditioning  $-B_T = 5.5 \text{ kG}$ ,  $I_p = 0.65 \text{ MA}$ , Helium
- Increase in voltage capability should be greater

### **Operation with type 1 ELMs with upgraded antenna**

Summary of results to be presented:

- Coupling with type I ELMs
- Losses in scrapeoff region to the outer divertor RF heated zone enhanced with ELMs
  - Apparently due to increased edge density effect on edge RF power deposition
- ELM energy deposition peaked around outer divertor strike radius and may contribute little to the RF hot zone
  - Reliable arc discrimination should allow powering through ELMs

# Fast waves propagating in the SOL are heating the tiles of the outer divertor plate

ELM-free H-mode,  $P_{RF} \sim 1.8$  MW,  $P_{NB} = 2$  MW,  $I_P = 1$  MA,  $B_T = 5.5$  kG



- "Hot" region is much more pronounced at -90° than at -150°
  - Edge power loss is greater at -90°
  - Also, suggests fields move away from wall at -150° along with the onset density for perpendicular wave propagation
- IR camera measurements indicate hundreds of kW are deposited in the "hot" region

### Study of RF heating of the outer divertor plates versus magnetic field pitch and antenna phase for ELMy case

 ELMing discharges studied for I<sub>P</sub> = 0.8 MA, P<sub>NB</sub> = 2 MW versus:

| Β <sub>φ</sub> | and | φ <sub>A</sub> | Shot # |
|----------------|-----|----------------|--------|
| 5.5 k          | κG  | -90°           | 135325 |
| 4.5 k          | κG  | -90°           | 135333 |
| 4.5 k          | κG  | -150°          | 135337 |
| 5.5 k          | κG  | -150°          | 135339 |
|                |     |                |        |

- Powered through ELMs without arcs for these cases
- Edge power loss is increased with higher density and ELMing activity

#### $\phi_A$ = -90° discharge parameters



## RF heated pattern on lower divertor plate follows the magnetic pitch



### Location of heat zone has significant dependence on field pitch at lower and upper divertor plates



- $\sim$  8 cm shift outward with reduced field pitch
- Also, possibly a small shift with phase

## Heating on outer divertor plate is more intense with ELMs with same field pitch ( $P_{RF} = 1.9$ MW)



#### 135337 with ELMs – 4.5 kG, 0.8 MA





## Higher edge loss with ELMs is consistent with higher edge density with ELMs



- Thomson scattering indicates that the edge density relative to the onset density for perpendicular propagation is greater with ELMs
  - consequently the FW perpendicular propagation begins closer to the antenna with ELMs
- ELMs reduce the energy confinement as well

## ELMs reduce plasma heating by ejecting energy (as for NB) as well as by producing higher edge density



•  $\Delta W_e$  and  $\Delta W_{tot}$  for shot 135337 with ELMs are reduced by ~ 50% relative to shot 130608 ELM free case

•  $D_{\alpha}$  indicates increased power deposition to divertor region with ELMs

## ELMs do not appear to enhance HHFW loss to divertor directly



- Key question: does ELM contribute significant heat in the primary RF heated divertor zone?
  - Probably not
- Fast IR camera shows ELM heat deposition peaked at outer strike radius falling to a low value towards the RF heated zone (R ~ 1.1 m)
- Future experiments are planned to determine the ELM effect on the primary RF edge heating zone at Bay H

## RF "hot" zone should be in fast IR view at Bay H for $I_P = 1$ MA at $B_T = 4.5$ kG





- Comparison with Bay I indicates shift of peak will suffice for viewing at Bay H
- Does ELM affect hot zone deposition directly?
   *Again, not likely*

## It is apparently not necessary to avoid or reduce coupling during ELMs

- ELM does not appear to interact directly with RF edge power loss
- Reliable arc detection in the presence of ELMs is needed for powering through ELMs
  - Arc detection using the derivatives of the voltage reflection coefficients may provide reliable arc discrimination relative to ELMs

## Coupling through ELMs made possible by setting matching level and a high rho trip value (0.7 here)

RF source response to ELMs for Shot 135340



#### **ELM** behavior



 Safe coupling through ELMs requires a reliable arc detection scheme that can ignore ELM reflection coefficient

# Detecting arcs with the time derivative of the voltage reflection coefficient allows powering through ELMs



 ∂rho/∂t gives a sharp peak at an arc which is about an order of magnitude larger than at the ELM

- rise time of arc ~ 3  $\mu$ sec, of ELM ~ 50  $\mu$ sec

- Ringing occurs in the transmission system after source turn off
- Should be possible to frequency discriminate against arcs (e.g. high pass/low pass filter)

### Summary

- Upgraded antenna commissioned
  - Good decoupling restored
- Lithium on antenna affects maximum power achieved
  - Plasma conditioning allowed higher power operation and more robust heating of H-mode plasmas with upgraded antenna
  - H-mode regimes established without and with NB injection
- RF edge power loss is increased with ELMs
  - Losses from SOL in front of antenna to the outer divertor plate linked along the magnetic field lines are greater than for ELM-free case
  - Increase appears to be linked to higher edge density with ELMs
  - ELM heat deposition is peaked at the outer strike radius and appears to have little direct interaction with the RF heated region – future experiments planned to be sure
- Arcs are not due to increase in reflection coefficient by ELM
  - Can power RF through an ELM in the absence of an arc
  - Time derivative of reflection coefficient can be used to discriminate between ELMs and arcs