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NSTX HHFW conditioning and operation with the
upgraded dual feed antenna

Outline:

« Antenna upgrade

» Conditioning for optimum antenna power capability

» Operation at higher power and with ELMs with upgraded antenna

« Optimization of coupling in the presence of ELMs
— Reliable detection of arcs in the presence of ELMs



Antenna Upgrade

— Double end feed of antenna straps

— Maintaining parallel wave-number selectivity with proper decoupling
adjustments



NSTX HHFW antenna has well defined spectrum, ideal
for studying dependence of heating on antenna phase
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« Large B pitch affects wave spectrum

In plasma core
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Antenna upgraded to have feeds at both ends of
current straps in order to increase operating voltage

« 2009 Double-feed upgrade
shifts ground from end to
strap center.

- Lower strap voltage for a
given strap current:

— Approximately double power
per strap for the same plasma
load.

— Permits larger plasma-antenna
gap (lower load)

Additional RF
Feed

Previous Ground




Electrical lengths set for resonance at 30 MHz —
Antenna loop and cube loop between two antennas

Microwave Studio Loops made resonant to within ~ 5 kHz to
used to predict lengths permit good decoupling between sources at cubes

Top Probe —

!

Bottom Prob

* Antenna loop is one wavelength long to provide continuous current along antenna
strap

« Similar configuration to that used on TFTR



5 decouplers between adjacent source cubes are
adjusted with commercial capacitors
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» View of cube feed system looking toward NSTX
* Note that the 12 line antenna system takes considerable space even with mostly 6

lines
« |ITER IC matching and decoupling system for 8 line antenna system using 12” lines

will fill most of the port cell
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unground)
[D&M]

cube 586 decoupler loop ¥2K settings(only related straps
P s2 EE

Cube 6 - Y2K settings for
upgraded configuration

1 29.995 MHz
2 29.840 MHz

[1" Center 30 MHz IFBW 10 Hz Span 1 MHz [

Decoupler capacitor set to
minimize coupling between
sources 5 and 6 at cubes

cube 586 decoupler loop 2009 settings(only related straps unground)
g M / Re .000dE

PR 521 Log de

Cube 6 - 2009 settings

1 29.970 MHz

[1" Center 30 MHz IFBW 10 Hz Span 1 MHz [

 All antenna feed loops grounded except for
those connected to cubes 5 and 6

» Feeding 6 gives two peaks prior to
changing capacitor

« One 6 peak with correct capacitor setting
to counter mutual coupling to 5
— signal at 5 is 33 dB down

cube 5&6 decoupler loop 2009 settings(on|

e

ly related straps unground)
f 0.000dE

Cube 5 from 6 - 2009 settings
- 33 dB from 6

1 30.000 MHz

[1" Center 30 MHz IFBW 10 Hz Span 1 MHz B!




Conditioning for optimum antenna power capability

— Effect of lithium on conditioning

— Expulsion of lithium from antenna surfaces appears to cause arcing =
RF magnetic field limit instead of voltage limit

— Predicted voltage enhancement with upgrade not realized but operation
more robust after conditioning — sustained H-mode with RF only



Ejection of material from antenna surfaces appears to
be the cause of the arcs during RF plasma operation

Plasma Conditioning: 0.5 MW — no arc 3.7 MW — 2 arcs
2 T T T T T 2 4 T T T T
P 135232 ] P 185253  p
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* Lithium sputtering from
outside of antenna can cause
arcs if material (dust) enters
faraday shield enclosure

* RF power is not limited by
RF voltage on antenna but the
limit appears to be an induced
RF current effect — i.e, an RF
current limit




Pre up to 3.7 MW sustained after plasma
conditioning to high power

Prr = 2.7 MW case Heating after plasma conditioning with
— no antenna arc Prr = 2.7 MW (He, B, = 0.55T)

TIME (sec)

« Example shown above for Pge = 2.7 MW = T_(0) up to 6.2 keV
* RF only H-mode produced near end of RF pulse
» Further conditioning indicated to eliminate the sputtering that persists
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Power and operating voltage increased somewhat
with upgraded antenna after conditioning

After Upgrade - 2009
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 Comparable conditions after conditioning — By = 5.5 kG, |, = 0.65 MA, Helium
* Increase in voltage capability should be greater
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Operation with type 1 ELMs with upgraded antenna

Summary of results to be presented:
— Coupling with type | ELMs

— Losses in scrapeoff region to the outer divertor RF heated zone enhanced
with ELMs

» Apparently due to increased edge density effect on edge RF power
deposition

— ELM energy deposition peaked around outer divertor strike radius and may
contribute little to the RF hot zone

* Reliable arc discrimination should allow powering through ELMs
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Fast waves propagating in the SOL are heating the
tiles of the outer divertor plate

>

>

ELM-free H-mode, P ~ 1.8 MW, Pyg =2 MW, I, =1 MA, B;=5.5 kG

Edge Pre Edge Prg

deposition deposition

,J'

0.353 sec 130621 B 130608 -0.250 sec

“Hot” region is much more pronounced at -90° than at -150°

- Edge power loss is greater at -90°

- Also, suggests fields move away from wall at -150° along with the onset
density for perpendicular wave propagation

IR camera measurements indicate hundreds of kW are deposited in the

“hot” region
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Study of RF heating of the outer divertor plates versus
magnetic field pitch and antenna phase for ELMy case

« ELMing discharges studied for da = -90° discharge parameters
I, = 0.8 MA, Pyg = 2 MW versus: 6 Mo 1.2
By =4.5k
B¢ and ¢, Shot # ?1%59m-2) - Te(0)
5.5 kG -90° 135325 54 108 (ke¥)
4.5 kG 90° 135333 T ]
45 kG '1500 135337 oL D 404 DO!.
_150° WMHD . A |
5.5 kG 150° 135339 o
* Powered through ELMs without (2
nelL
arcs for these cases (1010m2) [ 1(0)
P 40.8 (keV)
* Edge power loss is increased with R, | |
higher density and ELMing activity “ ' D
( b r WMHD
0 . . . . . 0.0
0.2 0.3 0.4 0.5

Time (sec)
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RF heated pattern on lower divertor plate follows the
magnetic pitch

/p/nstxcam /miro/2009,/Miro_135333.cin at 451.801 ms /p/nstxcam /miro /2009 /Miro_135325.¢cin at 455.093 ms

Bay G
IR view
Bay |
IR view
1353"33 IR'I t= .2'52,236,352,419,452,486,519 — Time=252ms 135325 IR |t = 255,288,355,422,455,488,522 —— Time = 255 ms
3| Prp=2.6 MW — 8 - Ppp=2.6 MW — -
Q (pulse 0.25 - .46 sec)  — 419 (pulse 0.25 - .46 sec)  — 422
- 452 - 455 -
(MW/m2) - - 486 -- 488
522
oL _ 4
- - M
||\ |"|
1 - - A X\
0.2 0.2 0.4 0.6 0.8 1.0

Radius (m) Radius (m) 1°



Location of heat zone has significant dependence on
field pitch at lower and upper divertor plates

from \EFITO02, Shot 135333, time=445ms
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« ~ 8 cm shift outward with reduced field pitch
+ Also, possibly a small shift with phase
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Heating on outer divertor plate is more intense with
ELMs with same field pitch (Pge = 1.9 MW)

130608 ELM free — 5.5 kG, 1 MA 135337 with ELMs — 4.5 kG, 0.8 MA

IR Bay | IR Bay |
y y
. ! I 130608 ! ! 135337
6 N — 1=0.242 sec - 6 — t=0.215 sec -
o ---0.275 ---0.348
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(MW 4 - - -+ 0.342 1 (MW 4r o 8.;112 -
/m?) i /m?) ' fs
2r ] 2T f %
O %%A:\‘_LJ*J.JJ-! e  Swast O 2 CallR el Wj—sj-%
0.2 0.6 0.8 1.0 0.2 0.6 0.8 1.0
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Higher edge loss with ELMs is consistent with
higher edge density with ELMs

Edge ne vs Time Ne VS R
6 I I I I I T T T T
Ne edge 135337 ELMs PRE ne © 135337 ELM
(156.2 cm) 130608 ELN-free 1 (MW) (1019 | >
(1018/m3) 4 E /m3) |
2+ 11 FW L 2+ 130608 ELM-free
- N\ 1~ Onset -
0.0 0.2 04 0.6 20 60 100 140
Time (sec) Radius (cm)

- Thomson scattering indicates that the edge density relative to the onset
density for perpendicular propagation is greater with ELMs

— consequently the FW perpendicular propagation begins closer to the
antenna with ELMs

- ELMs reduce the energy confinement as well
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ELMs reduce plasma heating by ejecting energy (as
for NB) as well as by producing higher edge density

ELM free (130608_s09) ELMYy (135337_334)
2
1 PRF
(MW)
1
D(X
(au)
0
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
TIME (sec) TIME (sec)

* AW, and AW,, for shot 135337 with ELMs are reduced by ~ 50% relative to
shot 130608 ELM free case

- D, indicates increased power deposition to divertor region with ELMs
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ELMs do not appear to enhance HHFW loss to
divertor directly

Fast IR at Bay H with Phase =-90°, B; = 4.5 kG, I, = 0.8 MA

--------------- 04 T T T T
Q 135333 t = 0.4204s ELM peak Q 135333 R =0.88m
MW/ 06 - Fast IR 0..419s before ELM 7 (MW/ Fast IR 0.975m
m2) . BayH |l m2)  BayH )
0.4 -
0.2 | _
- 6QELM —
0.2 - rrrm R
' - 2
= _ NB P
0-0 L 1 .--"I " " L “I‘: 1 L " ‘l' 1 "T “.u‘- 0.0 1 1 1 1 T 1 1 (MW)
0.2 0.4 0.6 0.8 T T1.o 0.0 0.2 0.4 0.6
Radius (m) Time (sec)

» Key question: does ELM contribute significant heat in the primary RF heated
divertor zone?

— Probably not

- Fast IR camera shows ELM heat deposition peaked at outer strike radius —
falling to a low value towards the RF heated zone (R ~ 1.1 m)

 Future experiments are planned to determine the ELM effect on the primary
RF edge heating zone at Bay H 21



RF “hot” zone should be in fast IR view at Bay H for
I, =1 MA at B; = 4.5 kG

B =4.5kG, |, =0.8 MA case

Q P [wes t = 0.4204s ELM peak 04 Mossss’ R - 0.88m
(MW/ Fast IR 0..419s before ELM (MW/ Fast IR 0.975m
m2) 04 | Bay H | m2) - BayH
0.2 |
0.2 _
0.0 . . . 0.0 . . . T . .
3 135333334 ' . i 0.0 0.2 0.4 0.6
B t = 0.252s 0.286s ; Time (sec)
Slow IR 0.319s 0.352s "
AQ 2 : : C
RE-no RF - Comparison with Bay | indicates
Mw/ | shift of peak will suffice for viewing
m2) at Bay H
0 * Does ELM affect hot zone
deposition directly?
-1 i

0.2 0.4 0.6 0.8 1 1.0 — Again, not likely
Radius (m)
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It is apparently not necessary to avoid or reduce
coupling during ELMs

— ELM does not appear to interact directly with RF edge power loss

— Reliable arc detection in the presence of ELMs is needed for powering
through ELMs

* Arc detection using the derivatives of the voltage reflection
coefficients may provide reliable arc discrimination relative to ELMs
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Coupling through ELMs made possible by setting
matching level and a high rho trip value (0.7 here)

Source voltage reflection coefficients
0.4ESRof 136380 -

rho 1 to 3

rho 4 to €

RF source response to ELMs for Shot 135340
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« Safe coupling through ELMSs requires

a reliable arc detection scheme that
can ignore ELM reflection coefficient
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Detecting arcs with the time derivative of the voltage

reflection coefficient allows powering through ELMs
Fast digitization parameters for source 2

o 13.6094 YRQ_1 <.:ldtVRCl_1 €104l—5), dakl, pn.et_1. t= .28.2-.292 o 13.609.4 \./RC_1.ddFVR.C_1 (1.0+.5), Il:’fwd_1., P'refll_1, t='2.909-'291
P ELM Arc | [
- M | -
Rho
9(Rho) 1} 1+ dRho/dt I
ot
(105 sec ) Rho
- ‘ ‘ - PR Rho -
e s v —— NG
dRho/ot
0 \asuai ‘ LN Detadnd 0 v 1h1D L
0.284 0.286 0.288 0.290 290900 + 40 + 80
Time (sec) Time (usec)

» drho/dt gives a sharp peak at an arc which is about an order of magnitude
larger than at the ELM

— rise time of arc ~ 3 usec, of ELM ~ 50 usec
* Ringing occurs in the transmission system after source turn off

« Should be possible to frequency discriminate against arcs (e.g. high pass/low
pass filter) 25



Summary

Upgraded antenna commissioned
— Good decoupling restored
Lithium on antenna affects maximum power achieved

— Plasma conditioning allowed higher power operation and more robust
heating of H-mode plasmas with upgraded antenna

— H-mode regimes established without and with NB injection
RF edge power loss is increased with ELMs

— Losses from SOL in front of antenna to the outer divertor plate linked
along the magnetic field lines are greater than for ELM-free case

— Increase appears to be linked to higher edge density with ELMs

— ELM heat deposition is peaked at the outer strike radius and appears to
have little direct interaction with the RF heated region — future
experiments planned to be sure

Arcs are not due to increase in reflection coefficient by ELM
— Can power RF through an ELM in the absence of an arc

— Time derivative of reflection coefficient can be used to discriminate
between ELMs and arcs

26



