

Supported by

HHFW Coupling into High Bootstrap Fraction RF H-Modes in NSTX*

Colorado Sch Mines Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

G. Taylor

S.P. Gerhardt, J.C. Hosea, C. Kessel, B.P. LeBlanc, D. Mueller, J.R. Wilson, S. Zweben and the NSTX Team *Princeton Plasma Physics Laboratory* R. Maingi, P.M. Ryan, J.R. Wilgen *Oak Ridge National Laboratory* R. Raman *University of Washington*

*Work supported by US DoE contracts DE-AC02-09CH11466 and DE-AC05-00OR2272

> US-EU-Japan RF Technology Workshop Como, Italy, September 13-15, 2010

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

- Role of HHFW in NSTX fully non-inductive startup
- Earlier low I_p HHFW heating results in NSTX
- Recent results from low I_p RF H-mode experiments
- Summary, plans & proposed collaboration

Role of HHFW in NSTX fully non-inductive startup

- Earlier low I_D HHFW heating results in NSTX
- Recent results from low I_p RF H-mode experiments
- Summary, plans & proposed collaboration

Early HHFW heating drives plasma into H-mode providing I_p overdrive from bootstrap current

• Ultimately Spherical Torus needs to run non-inductively

Modeling predicts 5-6 MW of HHFW power can achieve fully non-inductive $I_{\rm p}$ ramp-up in NSTX

- Tokamak Simulation Code used to model I_p ramp-up
- HHFW-assisted I_p ramp-up started at 100 kA
 - 6 MW HHFW (k_{||} = 8 m⁻¹)
 Co-CD phasing
 - 6 MW NBI added when $I_p \ge 400 \text{ kA}$
- 5-6 MW of HHFW projected to result in bootstrap current overdrive

Role of HHFW in NSTX fully non-inductive startup

\Rightarrow Earlier low I_p HHFW heating results in NSTX

- Recent results from low I_p RF H-mode experiments
- Summary, plans & proposed collaboration

Low I_p experiments in 2005 generated ~ 80% bootstrap current, but did not maintain RF coupling

- 65-80% bootstrap current generated in HHFW heated D_2 H-mode plasmas at I_p = 250 kA

• Could not maintain RF coupling during H-mode

Large changes in stored energy during RF H-mode result in poor control of plasma-antenna gap

Plasma control system (PCS) could not maintain plasma shape & position during low I_p H-mode

NSTX US-EU-Japan RF Technology Workshop

High Bootstrap Fraction RF H-Modes in NSTX (Taylor)

HHFW power coupled during transition from Coaxial Helicity Injection (CHI) start-up to I_p ramp-up

- 550 kW of RF power coupled Poor plasma position control when I_p was ramping from 100 to 300 kA
 - resulted in RF power trip

Despite plasma control problems HHFW did heat during I_p ramp-up from 100 to 300 kA

- Role of HHFW in NSTX fully non-inductive startup
- Earlier low I_p HHFW heating results in NSTX
- Recent results from low I_p RF H-mode experiments
 - Summary, plans & proposed collaboration

Recent upgrades to NSTX and HHFW system support low I_p RF H-mode operation

- Double feed antenna upgrade may improve rf coupling resilience during low I_p plasma operation:
 - Maintain rf coupling during large variations in antenna-plasma gap during L-H transition
- Major upgrade to the NSTX PCS produced 700% increase in processor speed:
 - Latency between between stimulus signal and control response now only 0.6 ms, 5 times shorter than earlier PCS

Li conditioning reduces edge n_e → moves n_{onset} off antenna, reducing RF power to vessel wall

 However, Li deposited on the antenna and Faraday shield contributed to arcing, requiring extensive vacuum and plasma conditioning

Low I_p RF H-mode experiments in 2010 focused on achieving 100% RF-driven non-inductive current

- RF coupling at $I_p \le 300$ kA & RF powers up to 5 MW:
 - Neutral beam blips enable measurement of q profile with motional Stark effect (MSE) & T_i with charge exchange recombination spectroscopy (CHERS) diagnostics

Low $I_p RF$ H-mode experiments started with $I_p = 300$ kA Ohmically heated target & $P_{rf} = 1-2$ MW

NSTX US-EU-Japan RF Technology Workshop

Large increase in stored energy during H-mode phases

Large changes in plasma shape and RF power resulted in RF H-mode not being sustained

- Relatively large changes in coupled RF power during pulse
- Plasma hits HHFW antenna

Lithium influx appears to cause some of the drop in RF power during pulse

138496

from \EFIT02, Shot 138496, time=277ms

Better control of plasma-antenna gap achieved recently, resulting in sustained RF coupling

Starting to gain better control of plasma position, but still difficult to control edge density

Indications of an internal transport barrier (ITB)

Time evolution of sustained low I_p RF H-mode

INSTX US-EU-Japan RF Technology Workshop High Bootstrap Fraction RF H-Modes in NSTX (Taylor)

- Role of HHFW in NSTX fully non-inductive startup
- Earlier low I_p HHFW heating results in NSTX
- Recent results from low I_p RF H-mode experiments
- Summary, plans & proposed collaboration

Summary, plans & proposed collaboration

- 65-80% bootstrap current achieved with HHFW in 2005 :
 - Demonstrated need for RF H-mode to replace inductive current
 - Plasma control at low I_p proved difficult during L-H transition
 - Could not sustain RF coupling during H-mode
- Reduced latency in the NSTX PCS, the double-feed HHFW antenna upgrade, and Li conditioning are starting to generate more stable low I_p RF H-modes:
 - However, Li deposition near antenna can lead to antenna arcs, requiring extensive RF conditioning
- Propose collaboration with TST-2 group at the University of Tokyo on HHFW-assisted $\rm I_p$ ramp-up