

Supported by

Science

High Harmonic Fast Wave Deposition and **Heating Results in NSTX***

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD U Colorado **U** Marvland **U** Rochester **U** Washington **U Wisconsin**

G. Taylor¹

P.T. Bonoli², M. Choi³, R.W. Harvey⁴, W.W. Heidbrink⁵, J.C. Hosea¹, E.F. Jaeger⁶, B.P. LeBlanc¹, D. Liu⁷, C.K. Phillips¹, M. Podesta¹, P.M. Ryan⁶, E.J. Valeo¹, J.R. Wilson¹,

and the NSTX Team

¹Princeton University ²Massachusetts Institute of Technology ³General Atomics ⁴CompX ⁵University of California - Irvine ⁶Oak Ridge National Laboratory ⁷University of Wisconsin - Madison

* Work supported by US DoE contract DE-AC02-09CH11466 **US-Japan RF Plasma Physics Workshop** General Atomics, San Diego, California, March 8-10, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

- Role of HHFW in the NSTX Program
- HHFW Heating of Ohmically-Heated Target Plasmas
- HHFW Heating of Deuterium NBI-Fueled Plasmas

• Role of HHFW in the NSTX Program

HHFW Heating of Ohmically-Heated Target Plasmas

HHFW Heating of Deuterium NBI-Fueled Plasmas

HHFW Heating & Current Drive (CD) Developed for Non-Inductive Ramp-up, Bulk Heating & q(0) Control

• Ultimately Spherical Torus needs to run non-inductively

HHFW Antenna Has Well Defined Spectrum Ideal for Controlling Deposition, CD Location & Direction

• Role of HHFW in the NSTX Program

HHFW Heating of Ohmically-Heated Target Plasmas

HHFW Heating of Deuterium NBI-Fueled Plasmas

Lithium Wall Conditioning Enabled NSTX Record $T_e(0)$ in He & D₂ in L-Mode with P_{RF}~ 3 MW

Ohmically-Heated Helium Target Plasma Transitions to H-Mode During 2.6 MW HHFW Pulse

Ray Tracing Simulation Predicts > 90% of RF Power Deposited on Electrons Inside ρ ~ 0.6

Shot 135260

Broader HHFW power deposition during H-Mode

Role of HHFW in the NSTX Program

HHFW Heating of Ohmically-Heated Target Plasmas

HHFW Heating of Deuterium NBI-Fueled Plasmas

Lithium Enabled Significant $k_{\phi} = 14+18 \text{ m}^{-1}$ Heating of Core Electrons During Some NBI D H-modes

ONSTX

Ray Tracing Predicts ~ 90% RF Absorption by Electrons During RF + NBI H-Mode

* Rays end when 99.9% of RF power is absorbed

 NBI fast-ion density and effective temperature provided by TRANSP analysis of similar NBI-only H-mode

Significant Interaction Measured Between RF & NBI Fast-Ions Over Multiple Cyclotron Harmonics

- Measured significant enhancement & broadening of NBI fastions and large increase in neutron rate when HHFW is applied to NBI plasmas
 - As predicted originally by CQL3D/GENRAY

Finite Lamor Radius & Banana-Width Effects Significantly Broaden Fast-Ion Profile in NSTX

- Zero-orbit-width Fokker-Planck CQL3D/GENRAY ray tracing model predicts fast-ion profile peaks on axis during RF
- Finite-orbit-width Monte-Carlo ORBIT-RF/AORSA
 2D full-wave model predicts
 broader outwardly shifted
 fast-ion profile
- Differences between ORBIT-RF/AORSA simulation and measurements are being investigated
- CQL3D modeling with first order orbit-width correction in progress this year

• Transition to H-mode occurs after RF turn on and without RF arc

NSTX

Strong Competition Between RF Heating of Fast-Ions and Electrons Near Axis During Shot 135340

* Rays end when 99.9% of RF power is absorbed

Broader RF Power Deposition at Higher k_{\phi} **During RF-Heated NBI H-Mode**

RF Deposition to lons Increases Significantly at Lower k_b During RF-Heated NBI H-Mode

Recent Version of TORIC Provides New Capability in NSTX TRANSP Analyses

 TORIC* full-wave solver, that can compute HHFW propagation and absorption in NSTX, now included in TRANSP

*M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)

- TORIC calculates power deposition into all species, including fast-ions
 - > No RF Monte-Carlo Fokker-Planck operator presently in TRANSP
 - Self-consistent calculation of fast-ions not available for RF-heated NBI plasmas
 - Use CQL3D Fokker-Plank code to estimate neutron rate generated by fast-ions

TRANSP/TORIC Modeling Predicts RF Absorption by NBI Fast-Ions Lasts Well After NBI Turn Off

- All rf power absorbed by electrons prior to NBI pulse
- After NBI turn-on, the fast-ion population absorbs HHFW power at the expense of the electrons
 - Trend confirmed by single time point calculations with AORSA, GENRAY and TORIC

RF Power Absorption by Fast-Ions Decreases as Fast-Ions Thermalize During RF-Heated NBI H-Mode

CQL3D Simulation Predicts ~ 40% of RF Antenna Power Coupled to Plasma for k_{ϕ} = -13 m⁻¹ Heating

• P_{rf} used in CQL3D modeling reduced to match simulated and measured neutron rate $k_{h} = -13 \text{ m}^{-1}$

Summary

 NSTX record T_e(0) obtained with P_{rf} ~ 3 MW in Li-conditioned, ohmically-heated plasmas

> Modeling predicts > 90% of rf deposited on electrons inside ρ ~ 0.6

- Strong interaction measured between RF & NBI fast-ions over multiple ion cyclotron harmonics
- Li conditioning enabled significant $k_{\phi} = 14+18 \text{ m}^{-1}$ heating of core electrons during some NBI D H-modes plasmas
- Modeling predicts significant RF damping on fast-ions near the plasma core during most NBI + RF H-modes studied so far

> RF deposited on fast-ions increases significantly for lower k_{ϕ} heating

• CQL3D simulation predicts ~ 40% of RF antenna power heats plasma inside separatrix during k_{ϕ} = -13 m⁻¹ heating