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* Role of HHFW in the NSTX Program

« HHFW Heating of Ohmically-Heated Target Plasmas

« HHFW Heating of Deuterium NBI-Fueled Plasmas
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HHFW Heating & Current Drive (CD) Developed for
Non-Inductive Ramp-up, Bulk Heating & q(0) Control

« Ultimately Spherical Torus needs to run non-inductively
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HHFW Goals

(1) HHFW couples to
Start-up plasma

(2) HHFW for I, overdrive
through bootstrap &
HHFW CD

(3) HHFW generates
sufficient I, to confine
NBI ions

(4) HHFW provides bulk
heating & q(0) control
in H-mode
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HHFW Antenna Has Well Defined Spectrum Ideal for
Controlling Deposition, CD Location & Direction
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12 Antenna Straps easily adjusted from 0° to 180°
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=) . HHFW Heating of Ohmically-Heated Target Plasmas
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Lithium Wall Conditioning Enabled NSTX Record
T,(0) in He & D, in L-Mode with Pre~ 3 MW

B+(0)=0.55T Helium: T,(0) = 6.2 keV
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Ohmically-Heated Helium Target Plasma Transitions
to H-Mode During 2.6 MW HHFW Pulse

Shot 135260
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Ray Tracing Simulation Predicts > 90% of RF Power

Deposited on Electrons Inside p ~ 0.6

Shot 135260

21 Time = 0.298 s o8l
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Power : Q. = 98%
Depositison ) Q: = 20,
(chm ) | QHe = ~0%
|
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o= = — 0
° o
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GENRAY

Time =0.465 s
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97%
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« Broader HHFW power deposition during H-Mode
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=) . HHFW Heating of Deuterium NBI-Fueled Plasmas
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Lithium Enabled Significant k, = 14+18 m-' Heating
of Core Electrons During Some NBI D H-modes

RF+NBI Shot 129386

NBI Only Shot 129381
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0 . — — 0 — .
02 MAJORRADIUS(m) 16 02 MAJORRADIUS(m) 1.6
15 r r
0.482 s . k¢=14&18 m-"
3 - B-(0) = 5.5 kG
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« At B+(0) = 4.5 kG & without Li,
HHFW did not heat core of D

MAJOR RADIUS (m) -6

NBI-fueled H-mode*

*B. LeBlanc, et al., AIP Conf. Proc. 787, 86 (2005)
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Ray Tracing Predicts ~

90% RF Absorption by

Electrons During RF + NBl H-Mode

Toroidal View”

= 0 o
RF+NBI Shot 129386 ge - 824» Time = 0.48 s . Antenna
fast™ °| (End of H-Mode 7 S
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* Rays end when 99.9% of RF power is absorbed

Strap

- NBI fast-ion density and effective temperature provided by
TRANSP analysis of similar NBl-only H-mode
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Significant Interaction Measured Between RF & NBI
Fast-lons Over Multiple Cyclotron Harmonics

B.(0) = 5.5 kG

128742 128739 Fast-lon D, (FIDA) Measurement
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« Measured significant enhancement & broadening of NBI fast-
lons and large increase in neutron rate when HHFW is applied to
NBI plasmas

» As predicted originally by CQL3D/GENRAY
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Finite Lamor Radius & Banana-Width Effects
Significantly Broaden Fast-lon Profile in NSTX

3 .
Zero-Orbit-Width
CQL3D/GENRAY
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1.6
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Zero-orbit-width Fokker-
Planck CQL3D/GENRAY
ray tracing model predicts
fast-ion profile peaks on
axis during RF

Finite-orbit-width Monte-
Carlo ORBIT-RF/AORSA
2D full-wave model predicts
broader outwardly shifted
fast-ion profile

 Differences between ORBIT-RF/AORSA simulation and
measurements are being investigated

« CQL3D modeling with first order orbit-width correction in progress

this year

DONSTX
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H-mode Initiated & Maintained Through ELMs with

P.. ~ 2.7 MW During ~ 2 MW D, NBI

5 . — 135340 8 .
Shot 135340 l>H Co
.. nL
_Trangltlon € -1
I/ S
| |
B I
R i
b N
(10m-2) _/_/ - 5
|
B P ' -4 G
IW D(L /RFI L o>E
A | : "o
~/ [ : | PREK/’NF\)/?BI - Time =0.282 s
k¢ =-13m’ I - 0.298 s
0 1] | I O
02 : 0.5 0 2 2 2 . . »
TIME (sec), 0.2 RADIUS (m) 6

)
Time of GENRAY analysis

- Transition to H-mode occurs after RF turn on and without RF arc
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Strong Competition Between RF Heating of Fast-
lons and Electrons Near Axis During Shot 135340

Shot 135340
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* Rays end when 99.9% of RF power is absorbed
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Broader RF Power Deposition at Higher k;
During RF-Heated NBI H-Mode
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RF Deposition to lons Increases Significantly at
Lower k, During RF-Heated NBI H-Mode
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Recent Version of TORIC Provides New Capability in

NSTX TRANSP Analyses

« TORIC* full-wave solver, that can compute HHFW propagation
and absorption in NSTX, now included in TRANSP

*M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)

« TORIC calculates power deposition into all species, including
fast-ions

» No RF Monte-Carlo Fokker-Planck operator presently in TRANSP

» Self-consistent calculation of fast-ions not available for RF-heated
NBI plasmas

» Use CQL3D Fokker-Plank code to estimate neutron rate
generated by fast-ions
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TRANSP/TORIC Modeling Predicts RF Absorption by

NBI Fast-lons Lasts Well After NBl Turn Off

TRANSP/TORIC
Shot 129354 4 ! ! T 129354 803

Power
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Power _ Pnbi N -
(MW) - \ " fast -

Nfast - -
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O 1 1
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Time(s)
« All rf power absorbed by electrons prior to NBI pulse
« After NBI turn-on, the fast-ion population absorbs HHFW power
at the expense of the electrons

» Trend confirmed by single time point calculations with AORSA,
GENRAY and TORIC
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RF Power Absorption by Fast-lons Decreases as
Fast-lons Thermalize During RF-Heated NBI H-Mode

Shot 130608 | » Electron p increases with
Time of GENRAY time as density rises,

Analysis ; iIncreasing RF heating on
TRANSP/TORIC l Ky =-13m" | electrons

I
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- | Ve ﬂ 1 » GENRAY predicts 86%
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0 R B | A 13% on fast-ions
0.2 : 0.5
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CQL3D Simulation Predicts ~ 40% of RF Antenna
Power Coupled to Plasma for k, = -13 m™? Heating

* P;used in CQL3D modeling reduced to match simulated and
measured neutron rate _ y
k¢ =-13m

25 ' T .\ T T
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Summary

 NSTX record T,(0) obtained with P~ 3 MW in Li-conditioned,
ohmically-heated plasmas

» Modeling predicts > 90% of rf deposited on electrons inside p ~ 0.6

e Strong interaction measured between RF & NBI fast-ions
over multiple ion cyclotron harmonics

* Li conditioning enabled significant k, = 14+18 m-1 heating of core
electrons during some NBI D H-modes plasmas

* Modeling predicts significant RF damping on fast-ions near the
plasma core during most NBI + RF H-modes studied so far

» RF deposited on fast-ions increases significantly for lower k,heating

« CQL3D simulation predicts ~ 40% of RF antenna power heats plasma
inside separatrix during k, = -13 m™" heating
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