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Introduction and motivation

* Fast particle transport and losses in presence of Low Frequency
MHD modes has been studied in different devices (TFTR, DIII-D,
ASDEX, NSTX, ...)

* Often core modes have been addressed described by single
helicity radial perturbation (NTM, tearing mode, core kink)

* Former studies on NSTX focused on (m=2,n=1) core kink
— Depletion at particle energies below the injection energy (NPA)
— Passing particles (E<Einj) are preferencially affected

* Here we address early low frequency MHD activity on NSTX
— Strongly affects fast ion population (FIDA)

— Appears to be an important element for the destabilization of high frequency
CAE modes
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Outline

* EXxperimental scenario
— Typical discharge evolution, MHD activity
— FIDA observations

* Mode characterization
— Experimental observations
— Mode structure from ideal stability computations

 Losses and redistribution of beam ions
— Full orbit simulations results
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Experimental Scenario
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H-mode plasma (t<300 ms)
— B=0.4T Ip=900kA

— P,,=4-6 MW

MHD activity at different
frequencies:

— Toroidal AE (bursting)

— Global/Compressional AE
(bursting/continous)

8kHz mode destabilized at
0.22s (beginning | flat top)

Mode onset induces plasma
braking

Mode vanishes after 100 ms,
as density increases
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MHD dynamic at mode onset
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Depletion of FIDA density at mode onset
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Vertical FIDA diagnostic
provide local information on
fast ion density

n_., depletion observed after

mode onset:

— up to 30% reduction

— LFS affected first and more
— 10 ms time scale

Fast lon confinement remains
deteriorated during the mode
activity
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FIDA spectra evolution across mode onset
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* Spectral signal decrease in a broad band of wavelength/energies
« Reduction of signal from A)\Doppler<2.5 nm (E,< 30 keV)
- Vertical FIDA is sensitive to low pitch angles (p=v,/v <0.6, E~30-60 keV)

* Low Frequency MHD activity affects mostly trapped population
* Fast lon Losses vs Redistribution in phase space?
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Low Frequency Mode Characteristics

* Mirnov array indicates n=1 (15 Gauss at plasma boundary), weaker n=2
* No clear evidence of magnetic island (e.g. Te)
_MESXR - NSTX 142296
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* Edge Toroidal SXR array - Radial displacement of plasma
(MESXR) captures peripheral pedestal measured by
dynamic: reflectometer

— expansion-compression Difficult to determine internal mode
— 8kHz, r/a>0.6 structure (bat ear cut-off)
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PEST code used to predict the mode structure
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— Reversed shear in plasma core
— High pressure gradient at pedestal
— Free boundary
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Kink n=1 mode structure (PEST)
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* High order poloidal harmonics contribute in the peripheral region

* Finite amplitude at the plasma boundary

* Mode amplitude is larger in the LFS (m=3-4 overall structure)
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Kink structure validation and normalization (1)

Mode structure checked against measurements
assuming saturated structure is similar to linear computation
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* SXR emissivity assuming
carbon impurity only:

Esxr = n Rc(T,)

* Rigid toroidal rotation at mode ;5
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Kink structure validation and normalization (2)

Reasonable agreement with data if ¢ scaled to 2% of PEST output
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Predicting fast ion distribution function with SPIRAL

* The full-orbit MC code SPIRAL has been used to calculate the fast ion
losses and distribution function in presence of the kink mode

* SPIRAL follows beam ions orbiting in the perturbed magnetic field
according to PEST prediction (scaled)

* Simulation approach:

— Fast ion birth profile from TRANSP/NUBEAM (10° particles launched
along 25000 tracks, including 3 NB sources and 3 energy fractions -
90,45,30 keV)

— Random selection of ionizing neutrals introduced at uniform rate
along 25 ms simulated time window

— Since energy slowing down time for 90 keV ion is ~15 ms, the final
distribution assumed to be representative of the steady state

* Simulations also include effect of plasma rotation and magnetic ripple
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SPIRAL results

* Simulations have been conducted for 3 NSTX beams separately
* Reference case with equilibrium field only ran for comparison
* So far, ensembles of 2000 particles per beam have been processed
* Low statistics:
— adequate to evaluate total losses
— insufficient to address redistribution in phase space

Total Beam lon Losses

Beam A 9.2 % 12.3 % +3.1%

Beam C 251 % 28.2 % +3.1%

Incremental effect on fast particle losses
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SPIRAL.: effect on distribution functions

Low statistics: insufficient to address redistribution in phase space

* Possible indication of increase of pitch~1 population
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SPIRAL.: radial distribution of particle pitch (Beam C)

* Radial variation of distribution function can be considered
* Possible indication of off-axis increase of pitch>0.5 population
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Conclusions

* Early LF MHD is observed to affect strongly the fast ion population on
FIDA measurements
— Fast lon polulation reduced as much as 30%
— Fast ion redistribution may be responsible for the high frequency CAE associated
with the LF MHD
* Mode nature and structure studied with ideal MHD stability
— global kink nature, finite edge amplitude, associated to a residual reversed shear
— a kink perturbed equilibrium has been constructed consistent with experimental
observations
* Full-Orbit simulations with SPIRAL used to study the effect on fast ion
confinement
— Fast ion losses increase by 3%, suggesing redistribution can play a role
— At present the MC statistics is insufficient to draw conclusions on redistribution
— Possible indications of redistribution of fast passing ions need confirmation
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