Study of chirping Toroidicity-induced Alfvén Eigenmodes in the National Spherical Torus Experiment

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U Wisconsin**

Mario Podestà

Supported by

R. E. Bell, A. Bortolon, N. A. Crocker, D. S. Darrow, E. D. Fredrickson, G.-Y. Fu, N. N. Gorelenkov, W. W. Heidbrink, G. Kramer, S. Kubota, B. P. LeBlanc, S. S. Medley, H. Yuh

and the NSTX Research Team

12th IAEA technical meeting on Energetic Particles in magnetic confinement systems Austin, TX

Sep. 7-10, 2011

U.S. DEPARTMENT OF

ENERGY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

Bursting toroidicity-induced Alfvén eigenmodes (TAEs) can lead to enhanced fast-ion transport

- Multiple TAEs can be simultaneously destabilized
 - Possible overlap of many resonances in phase space
 Non-linear development into "TAE *avalanches*"

Bursting toroidicity-induced Alfvén eigenmodes (TAEs) can lead to enhanced fast-ion transport

- Multiple TAEs can be simultaneously destabilized
 - Possible overlap of many resonances in phase space
 - Non-linear development into "TAE avalanches" -> fast ion losses

Spherical tokamaks such as NSTX provide excellent test-bed

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

NSTX parameters

Major radius	0.85 m
Aspect ratio	1.3
Elongation	2.7
Triangularity	0.8
Plasma current ~1 MA	
Toroidal field	<0.55 T
Pulse length	<2 s
3 Neutral Beam sources	
$P_{NBI} \le 6$ MW, $E_{injection} \le 95$ keV	
□□□──────────────────────────────────	
This work:	

This work: Focus on TAEs in L-mode plasma Center-stack limited Deuterium plasma B_{tor}=0.55 T, I_p=0.7-0.9 MA

Mode activity and fast ion diagnostics on NSTX

Experimental scenario : P_{NB} <3MW, n_e ~3-4x10¹⁹m⁻³, T_i ~ T_e =1-1.5keV

- NB-heated, L-mode plasmas
 - Plasma limited on center-stack
 - NB power and timing varied to affect mode stability
 - Plasma profiles evolving in time
 - > Monotonic, centrally peaked: OK for reflectometer measurements
 - Central plasma rotation up to 40kHz
 - > Large Doppler shift of mode frequency

Safety factor profile evolves from strongly to slightly-reversed shear

- NB-heated, L-mode plasmas
 - Plasma limited on center-stack
 - NB power and timing varied to affect mode stability
 - Plasma profiles evolving in time
 - Reversed-shear q profile
 - $> q_{min}$ ~1 toward end of discharge
 - Safety factor evolution reconstructed through LRDFIT code constrained by MSE data

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

TAEs with low-intermediate toroidal mode number $(n=2\rightarrow7)$ are observed, with dominant n=2-4 modes

- Burst separation 0.5 2 ms
 - No systematic variation with n_e, T_e, P_{NB}, …
 - Frequency evolution does not follow unique patter (e.g. t^{-1/2}, linear, exponential)
- Usually, each mode chirps independently of the others...
- ... but, eventually, *avalanches* occur:
 - Drop in neutron rate, FIDA

Up to ~30% of fast ions can be lost during a single TAE avalanche

- Fast ion density (FIDA) drops over most of minor radius
 - Loss results in a relaxation of the radial gradient → drive for TAEs is reduced
 - Comparable losses estimated from FIDA and neutron rate
 - Large portion of phase space affected
 - Losses increase with (total) mode amplitude
 - Linear+threshold? Quadratic?

Frequency vs. amplitude are correlated; reminiscent of driven, non-linear system

NSTX

On average, TAE frequencies are consistent with a common frequency in the plasma frame

Measured frequency consistent with:

- Valid for time scales >1 ms
- In general, each mode shows a different sub-millisecond dynamic

On average, TAE frequencies are consistent with a common frequency in the plasma frame

FFT window 1.3ms

Measured frequency consistent with:

NSTX

12th IAEA TM on Energetic Particles – Chirping TAEs in NSTX, M. Podestà (09/07/2011)

14

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

Multi-channel reflectometer is main tool to unravel details of mode structure evolution Crocker et al., PPCF 2011

• Makes it possible comparison with codes – e.g. NOVA – in terms of dn/n

NOVA eigenmodes selected from matching with measured frequency, mode number, structure

Mode structure maintains its shape even during strong, *multi-step* avalanches

- Re-scaled dn/n shown (compare radial structure, not amplitude)
- Outward propagation of *unstable front* during burst not observed
 Zonca et al., NF 2005
 - Broad mode structure, ~ minor radius
 - Incomplete transition TAE \rightarrow EPM?

Modes have broad mode structure, extending over good fraction of minor radius; peak at mid-radius

() NSTX

Comparison with NOVA (ideal MHD!) is satisfactory; however, no good match for *n*=1 ... if 'TAE'

- NOVA results assume ideal MHD, no fast ion effects
- Need to carefully check profile consistency between experimental data (MPTS, CHERS) and TRANSP output / NOVA input

Initial results from [non-linear, self-consistent] code M3D-K consistent with experiments, too

- Need to carefully check profile consistency between experimental data (MPTS, CHERS) and TRANSP output / NOVA input ... and M3D-K

Similar features observed in L- and H-mode plasmas and during combined NB+RF : *robust* dynamics

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

Onset of bursting/chirping regime strongly dependent on injected NB (and RF) power

- Take fractional frequency variation $\Delta f\!/f_{0,\text{pl}}$ as metric for severity of bursts
 - $f_{0,pl}$: mode frequency in the plasma frame
- Each symbol represents values for single *n* mode, 5 ms average

High ratio of fast ion to thermal β leads to bursts/chirps – but other factors determine mode dynamics

- Modes show more bursting character as discharge evolves
 - NB power increases, fast ion population and $\beta_{f,i}$ builds up
 - Typical bursts have *edge* $\delta B/B \sim 10^{-4}$ (from Mirnov coils)
 - > Can increase more than x10 during avalanches

Destabilization of TAEs correlates with variations of heating scheme, e.g. NB vs. NB+RF

NSTX

- Example: H-mode discharges with NB and NB+RF heating
 - Different profiles with respect to L-mode (e.g. higher safety factor)
 - Reversed shear in both L- and H-mode

Strong dependence on NB drive leads to entangled evolution of TAEs, fast ions and thermal plasma

12th IAEA TM on Energetic Particles – Chirping TAEs in NSTX, M. Podestà (09/07/2011)

Once set up, bursting/chirping TAE regime is rather insensitive to variations in plasma parameters

- Burst separation 0.5 2 ms
 - No systematic variation with n_e, T_e, P_{NB}, ...
 - Frequency evolution does not follow unique patter (e.g. t^{-1/2}, linear, exponential)
- Usually, each mode chirps independently of the others...
 - ... but, eventually, *avalanches* occur:
 - Multiple modes lock on similar dynamic, mode-mode coupling

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

Coupling between multiple TAEs with ∆n_{tor}=1, enhanced losses observed during explosive modes' growth

- *Transition* from single- to multi-mode regime

Podestà et al., NF 2011

'New' modes appear in the spectrum above/below TAE range during large bursts

Modes can be classified into three groups

- Picture consistent with primary TAEs
 - coupling to each other
 - generating/pumping *secondary* modes through sum/difference with $\Delta n=1$

Simple model based on quadratic interactions can be used to investigate coupling between TAEs

 $\dot{s}_{n_3} = < c_{(n_1, n_2)} \, s_{n_1} s_{n_2} >_{f_{n_3}}$

 $s_{n2} \rightarrow s_{n2}^{*}$ (complex conjugate) for difference interaction

Right-hand side filtered around frequency f_{n_3}

Modes must satisfy matching conditions

$$\left\{ \begin{array}{l} n_3 = n_1 \pm n_2 \\ f_{n_3} = f_{n_1} \pm f_{n_2} \end{array} \right.$$

 $c(n_1, n_2)$ is the coupling coefficient, here used as 'free scaling parameter'

In practice:

- Real signals s_{n1} , s_{n2} , s_{n3} measured for each possible triplet, e.g. from Mirnov coils
- "Reconstruct" $s_{n3} \rightarrow s_{n3,rec}$ from measured s_{n1} , s_{n2}
- Compare measured and reconstructed \dot{s}_{n3}
- Frequency match must be verified in the plasma frame:
 - Rotation profile and location of each mode must be accurately known

Good agreement with quadratic interactions' model: amplitude evolution and frequency matching

 n=1 mode fades away when either amplitude of pump modes or frequency matching vanishes

Podestà et al., NF 2011

Mode number matching condition verified

 "Reconstructed" toroidal structure of n=1 mode also agrees with measured one

- Phase shift of ~180 degrees during strongest mode activity

Phase matching condition is *transiently* verified for tens of (primary) mode cycles during large bursts

- Stationary phase during quadratic interaction is important!
 - n=1 mode fades away \Leftrightarrow phase changes rapidly in time
 - "Single mode" dynamic, with each mode following its own chirp/burst cycle, is effective in reducing efficiency of quadratic interactions
 - Result: small bursts (single mode), and occasional multi-mode avalanches
- n=1 mode mediates coupling: what is it?

$f_{n=1}$ consistent with central plasma rotation: avalanches drive $f_0^{TAE} \rightarrow 0$ (plasma frame), cause coupling to 'kinks'?

12th IAEA TM on Energetic Particles – Chirping TAEs in NSTX, M. Podestà (09/07/2011)

Meaning of f_0^{TAE} : mode frequency at the mode location R^{TAE} , i.e. where drive is maximum

Meaning of *f*^{*TAE*}->0: f^{TAE} beats with *n* × rotation frequency at the plasma center

Coupling with kink-like modes favored when n_{tor} x f_{rot} on axis ~ f^{TAE}
 Observed for q>1: fishbone branch involved?

n=1, m=-2, ..., +2 kink found through ideal MHD code NOVA with no rotation, <u>free boundaries</u>

- Large edge perturbation, consistent with reflectometer's data

Measured perturbation evolves during burst; large edge component, dn/n>5%

- Data from inversion of multi-channel reflectometer signals
- Assume 'linear' model for reflectometer, pure O-mode propagation, fixed n_{0,el}
- Roughly consistent with (ideal) NOVA solution

Outline

- Experimental scenario, diagnostics
- General features of TAEs on NSTX
 - Frequency, amplitude dynamics
 - Mode structure
 - Role of fast ion drive
- Non-linear dynamics, mode-mode coupling
- Summary and open issues

Summary

- After onset, bursting/chirping TAE regime is "robust" against small variations of plasma parameters
 - L-mode vs. H-mode, NB only, NB+RF, ... : all show similar features
- Non-linearities at play in both single-mode and multi-mode (avalanching) TAE dynamics
 - But only avalanches seem to cause significant fast ion losses
 - Coupling manifests as intermittent, chaotic process
 - Coupling can encompass multiple 'scales': TAE, kink/fishbones (, GAE, ...)
 - Dynamics complicated by link between fast ions, TAEs, thermal plasma through NB injection
- Different physics for weak chirps *vs.* avalanches?
 - Single-mode; weak chirps regulated by phase-space, fast ion profile effects
 - Multi-mode; avalanches lock on underlying kink/fishbone ('global')
- Present experiments allow thorough benchmark of codes
 - Linear MHD satisfactory for first-order estimates of mode structure
 - Non-linear, self consistent codes required to capture full dynamics

Backup slides

Experimental scenario : P_{NB} <3MW, n_e ~3-4x10¹⁹m⁻³, T_i ~ T_e =1-1.5keV

NB-heated, L-mode plasmas

- Plasma limited on center-stack
- NB power and timing varied to affect mode stability
- Plasma profiles evolving in time
 - > Monotonic, centrally peaked: OK for reflectometer measurements
- Central plasma rotation up to 40kHz
 - > Large Doppler shift of mode frequency
- -Reversed-shear q profile
 - $> q_{min}$ ~1 toward end of discharge
- Safety factor evolution reconstructed through LRDFIT code constrained by MSE data

No detectable fast ion losses are observed during weakly bursting/chirping phase

- Statistical average over ~20 events (~10ms)
- No clear evidence of losses from neutrons, FIDA
 - <u>Does not exclude "continuous" (non-bursting) losses</u>

Up to ~30% of fast ions can be lost during a single TAE avalanche

- Fast ion density (FIDA) drops over most of minor radius
 - Loss results in a relaxation of the radial gradient → drive for TAEs is reduced
 - Comparable losses
 estimated from FIDA and
 neutron rate
 - Large portion of phase space affected
 - Losses increase with (total) mode amplitude
 - Linear? Quadratic?

Fast ion loss probe at vessel wall captures transient loss, provides details of affected phase space region

Scintillator probe, sFLIP:

- Magnetic spectrometer'
- Provides $\Gamma_{loss}(\rho,\chi,t)$
- 5cm ≤ r ≤ 60cm
- 15° ≤ χ ≤ 80°
- f_{sampl} = 30 kHz

- Observed losses at E~E_{ini}, wide pitch range
 - Possible signature of phase space stochastization
- Phase space model help understand loss process, measurements
- Simulations with ORBIT code under way

Evidence of redistribution at play – multiple frequency scales can be involved

- Bursting GAEs sometimes observed at f ~ 1 MHz during TAE activity
- GAE bursts precede TAE avalanches
 - But not all TAE avalanches are preceded by GAE burst
- Indication of fast ion redistribution by GAEs?
 - Different mode localization with respect to TAEs
- Losses only observed after TAE avalanches

Fredrickson, IAEA 2010

M3D-K – non-linear, self-consistent Hybrid/MHD code

G.-Y. Fu et al., Phys. Plasmas 13, 052517 (2006)

M3D-K code developed at PPPL and used to investigate fast-ion driven Alfvénic modes and MHD

- 3-D nonlinear.
- Several different physical models:
 - Resistive MHD.

- Hybrid (fluid electrons, particle ions).

- MHD/particle (one-fluid thermal plasma, + energetic particle ions).
- Full-orbit kinetic ions.
- Drift-kinetic electrons.
- For particles: Drift-kinetic or gyrokinetic.

NSTX reflectometers are used to measure density fluctuations

NSTX Multi-channel reflectometer system (UCLA)

- N. Crocker et al., PPCF 2011 (in press)

- Low-field side launchers/receivers
- Assume pure O-mode propagation

$$\Delta \Phi = \frac{2\omega}{c} \int_{x_{c.o.}}^{x_{inj}} N dx$$

$$N^{2} = \frac{k^{2}c^{2}}{\omega^{2}} = \frac{c^{2}}{\omega^{2}} k_{inj}^{2} \left[1 - \frac{n(x)}{n_{c}.o.} \right]$$

Analysis of reflectometer's data

- Low-field side launchers/receivers
- Assume pure O-mode propagation

$$\Delta \Phi = \frac{2\omega}{c} \int_{x_{c.o.}}^{x_{inj}} N dx$$

$$N^{2} = \frac{k^{2}c^{2}}{\omega^{2}} = \frac{c^{2}}{\omega^{2}} k_{inj}^{2} \left[1 - \frac{n(x)}{n_{c}.o.} \right]$$

- Invert data by using response matrix, $M : \Delta \Phi_i = M_{ij} \delta n_j$
- Find total $\delta n,$ then filter around each mode's frequency
- OK for small (<3%) δn
- Assumptions (pure O-mode, linear, ...) likely to break down for large perturbations

NOVA analysis reveals significant contribution to density perturbation from compressional term

- Compressional term is significant
- Impact interpretation of reflectometer's data, etc.

 $\frac{\delta n}{n} = \nabla \underline{\xi} - \underline{\xi} \cdot \frac{\nabla n}{n}$

MHD unstable *n*=1 kink also found through self-consistent M3D-K code

- Structure is different between NOVA and M3D-K
- Support hypothesis of marginally stable 'kink', destabilized during avalanche

Multi-channel reflectometer is used to look for decorrelation of TAE across rotation shear layer

Procedure:

- Band-pass filter signals around mode frequency (ex. *n*=3)
- Reconstruct frequency, amplitude evolution
- Get cross-correlation
- Obtain cross-phase between channels from time delay

Results from reflectometer show no evidence for spatial decorrelation of the modes across shear layer

No difference in measured frequency

sh#135388, band-pass filtered *n*=3 signals

12th IAEA TM on Energetic Particles – Chirping TAEs in NSTX, M. Podestà (09/07/2011)

No temporal correlation is observed between rotation shear evolution and mode amplitude rise/decay rates

- Effective rise/decay rates ulletsh#135388 -1.0 calculated from exponential fit min(df_{rot}/dR) [10² kHz/m] -1.2 (B-dot data) -1.81.0 -2.0 -2.2 -2.4 0.8 0.25 node amplitude [norm.] 0.20 0.6 τ_{decay}=46μs amplitude [a.u.] 0.15 0.4 0.10 0.05 0.2 0.00 _{growth}=49µs 10 $\gamma_{\rm rise}/\omega$ Δ 0.0 $\gamma_{
 m decav}/\omega$ -0.3-0.2 -0.1 ΠΠ 0.1 0.Z 0.3 γ/ω [%] t-t_{peak} [ms] Shear increases in time No correlation with inferred
- No correlation with inferred rates

260

280

300

320

t [ms]

340

360

380

Statistically significant ensemble does not show any clear trend of rise/decay rates on rotation shear

- Database of 10 discharges
- Group data with similar n_e, T_e
 - Similar damping on thermal plasma
- No simple dependence on injected NB power, T_e, n_e, ...
- Trends hidden by changes in *q* profile, gap structure, ... ?

Additional RF power marginally successful in decoupling fast ion, TAE and thermal plasma dynamics

May explain slight differences between NB-only and NB+RF

Preliminary results from M3D-K also show little effects of rotation on TAE structure

- No fast ion effects included
- Scale rotation profile from measured f₀=36 kHz down to f₀=18 kHz (50% reduction)
- Mode peak location, structure do not change substantially

Fu, TTF 2011

Fast ion population is key parameter to destabilize TAEs; subtle details hard to get experimentally...

NB only NB+RF, NB notch NB+RF, RF notch

- Marginal variations in n_f(R), grad(n_f) from FIDA, except for 100% change in source
- Can not differentiate between role of $\beta_{f.i.}$ and radial gradient
- •OK to look at trends

Bicoherence suggests coupling between modes at play during large bursts

- High bicoherence >70% measured during burst
 - Average over 11 Mirnov coils distributed toroidally over 360°
 - Indicative of sum/difference interactions between modes
 - Both TAEs and low-frequency modes participate

Proximity of beam ions to sFLIP detector at high χ (i.e. high μ) indicates why loss appears there first

_shot#: 141707a_shotTime: 485

Solid State NPA diagnostic on NSTX operated in "current mode" during FY-10 for high temporal resolution data on mode-induced fast ion losses

- Measurement of flux of energetic neutrals
 - 4 lines of sight on the NBI - $R_{tan} = 60, 90, 100, 120 \text{ cm}$
- Pinhole & Silicon photodiode detector (AXUV)
- Aluminum foil (150nm) blocks light, SXR, low energy neutrals (<10 keV)
- Detected neutrals generated by Charge Exchange of fast ions with beam and/or edge neutrals

'Fishbone beacon' observed during transient fast-ion losses associated with chirping modes

- Fast frequency chirping instabilities (e.g. TAE) accompanied by periodic bursts in ssNPA signals
- Fast ion loss cone, rotating in phase with the mode, is inferred based on time delay between ssNPA channels
- Burst appear at different phases in different channels

Open Issues

- How to scale present experiments to future devices (ITER), burning plasmas?
 - Code validation, multi-machine comparison are the key
 - > Linear codes (NOVA)
 - > Quasi-linear models, self-consistent codes (M3D-K)
 - > Investigate wave-fast ion interaction (ORBIT, SPIRAL)
 - > Improve stability calculations
 - But: conditions will be very different, e.g. F_{f.i.}(<u>r</u>,<u>v</u>,t) from alpha's (+NB, RF, ...)
 - > E.g. need better understanding of role of spatial *vs.* velocity gradients
 - Parallel effort: develop control tools
 - > Act on NB deposition, q-profile? Active antennas?
- Combine different diagnostics/techniques; develop phasespace models to interpret results consistently

