System studies of rf current drive for MST*
J.K. Anderson, D.R. Burke, S. Diem, C.B. Forest, J.A. Goetz,
R.W. Harvey, E.R. Hendries, M.C. Kaufman, A.H. Seltzman,
M.A. Thomas ¹
University of Wisconsin, Madison WI USA
² Oak Ridge National Laboratory, Oak Ridge TN USA
³ CompX, Del Mar CA USA
Two rf schemes are being studied on the MST reversed field pinch
for their potential in current profile control experiments. MHD
modeling has shown that a substantial externally-driven off axis
parallel current can improve stability of the dominant core tearing
modes. A radially localized axisymmetric population of fast
electrons has been observed by SXR emission during LH injection
(~100kW at 800MHz), and is consistent with CQL3D modeling
which predicts a small driven current. Computational work
suggests that doubling the input power will statistically improve
the LH-induced SXR signal to background ratio, and that about
2MW of injected power (an order of magnitude increase) will drive
enough current for stabilization of tearing modes. Additionally, a 1
MW 5.5 GHz electron Bernstein wave (EBW) experiment is under
construction, which utilizes a very simple and compact antenna
compatible with the demands of the RFP. EBW allows access to
electron cyclotron heating and current drive in the overdense
plasma. Coupling of the external electromagnetic wave to the
EBW has been demonstrated, and initial tests at ~100kW power
have produced a small, localized xray flux consistent with rf
heating and high diffusivity of fast electrons. Computational work
is currently underway to answer the very important questions of
how much power is required, and what level of electron diffusivity
is tolerable, to generate a consequential amount of EBW current.
*Work supported by USDOE