Experiments using ICRF Heating Antenna with Toroidal Phase Control Capability on LHD

R.Kumazawa, T.Seki, T.Mutoh, K.Saito, H.Kasahara, G.Nomura, F.Shimpo, Y.Zhao¹⁾, J.G.Kwak²⁾ and LHD Experiment Group *National Institute for Fusion Science, Toki 509-5292, Japan* ¹⁾*ASIPP, Hefei, Anhui, China* ²⁾*Korea Atomic Energy Research Institute, Daejeon, Korea*

In the last 14th experiment cycle (2010) a new one pair of ICRF heating antennas was installed in LHD [1]: This pair consists of two antennas arrayed in the toroidal direction and the wave number along the magnetic field line k_{ll} can be controlled with changing the phase difference between two RF generators connected to two antennas. The plasma sustained with only the ICRF heating consisted of the helium ions as a majority with the hydrogen ions as a minority. Several experiment results were obtained and compared with those obtained using the previous poloidal array (PA) antenna (no ability of changing $k_{//}$). It was found that the higher electron density could be sustained with $(0, \pi)$ phasing than with (0, 0) phasing, in which the plasma performance was almost the same as that using the PA antenna. Then the plasma heating efficiency η was measured using the ICRF heating power (P_{ICH}) modulation method and it was found that η was higher in $(0, \pi)$ phasing. But the plasma loading resistance in $(0, \pi)$ was smaller. The plasma of $n_e = 0.6 \times 10^{19} \text{m}^{-3}$ was sustained for 90 seconds with (0, π) phasing with P_{ICH}=0.8MW and with the Electron cyclotron Heating (ECH), P_{ECH}=240kW. The temperature increase in the divertor plates during the operation was observed to be smaller that with the PA antenna.

[1] H.Kasahara, et al., J. Plasma Fusion Res., Vol. 5, S2090 (2010).