ICRF scenarios for ITER's half-field phase

E. Lerche¹, D. Van Eester¹, J. Ongena¹, M.-L. Mayoral², T. Johnson³, T. Hellsten³, R. Bilato⁴, A. Czarnecka⁵, R. Dumont⁶, C. Giroud², P. Jacquet², V. Kiptily², A. Krasilnikov⁷, M. Maslov⁸, V. Vdovin⁹ and JET, EFDA Contributors⁴

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

 ¹LPP-ERM/KMS, Association Euratom-'Belgian State', TEC Partner, Brussels, Belgium; ²Euratom-CCFE Fusion Association, Culham Science Centre, UK ³Fusion Plasma Physics, Association Euratom-VR, KTH, Stockholm, Sweden; ⁴IPP(MPI)-Euratom Association, Garching, Germany ⁵Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland; ⁶CEA(IRFM)-Euratom Association, Saint-Paul-lez-Durance, France
⁷SRC RF Troitsk Institute for Innovating and Fusion Research, Troitsk, Russia; ⁸Centre de Recherches en Physique des Plasmas, Association EURATOM-Conf. Suisse, Lausanne, CH; ⁹RNC Kurchatov Institute, Nuclear Fusion Institute, Moscow, Russia

The non-active operation phase of ITER will be done in H and ⁴He plasmas at half the nominal magnetic field, $B_0=2.65T$. At this field and for the given frequency range of the ICRF system (f=40-55MHz), three ICRF heating scenarios are available *a priori*: (i) Fundamental ICRH of majority H plasmas at f≈40MHz, (ii) second harmonic (N=2) ³He ICRH in H plasmas at f≈53MHz and (iii) fundamental minority H heating in ⁴He plasmas at f≈40MHz. While the latter is expected to perform well for not too large H concentrations, the heating scenarios available for the Hydrogen plasmas are less robust: The fundamental majority ICRH suffers from the unfavourable polarization of the RF fields near the ion cyclotron absorption region while the N=2 ³He heating scheme requires large minority fractions to provide efficient bulk plasma heating. Recent JET experiments [1] performed in similar conditions to those expected in ITER's half-field phase confirmed the low performance of these two scenarios and numerical simulations [2,3] have shown that the situation is not much improved in ITER, mainly because of the rather modest plasma temperature and density expected in its initial operation phase. A summary of the main experimental results obtained at JET followed by numerical predictions for ITER's half-field ICRF heating scenarios will be presented.

[1] E.Lerche et al., 37th EPS Conf. on Plasma Physics, Dublin (2010), ECA 34A, O4.121

[2] E.Lerche et al., Proc. of 23rd IAEA Fusion Energy Conference, Daejeon (2010)

[3] R. Budny et al., submitted to Nucl. Fusion

• See the Appendix of F. Romanelli et al., paper OV/1-3, 23rd IAEA Fusion Energy Conference, Daejeon, 2010