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HHFW heating and CD are being developed for  
non-inductive ramp-up and bulk electron heating 

Sustain with HHFW + NBI 
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•  Two major roles for HHFW heating and CD in NSTX: 

  Enable fully non-inductive plasma current (Ip) ramp-up through bootstrap CD 
(BSCD) and direct RFCD during early HHFW H-mode 

  Provide bulk electron heating during Ip flat top, during NBI H-Mode 
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NSTX HHFW research in 2008-10 focused on studying both  
HHFW-Generated H-Modes & HHFW-Heated NBI H-modes 

•  Near-term approach to assess HHFW heating during Ip ramp-up has been  
to heat low Ip ohmic (~ 300 kA) plasmas to access 100% non-inductive CD 

•  Improved antenna/plasma conditioning produced HHFW-generated  
H-mode plasmas with Ip = 650 kA, BT(0) = 0.55 T when PRF ≥ 2.5 MW 

•  NBI + HHFW H-mode experiments at Ip = 0.7 - 1 MA, aided by Li 
conditioning, produced significant bulk electron heating when HHFW  
was coupled into the plasma: 

  HHFW acceleration of NBI fast-ions produced enhanced fast-ion losses  
during HHFW heating 

  Conducted extensive studies of HHFW heating and edge power loss 
mechanisms during ELMing and ELM-free H-modes 
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HHFW-Generated H-Mode Plasmas 

Sustain with HHFW + NBI 

IP [kA] 

Time 

HHFW 

HHFW + NBI 

      CHI, PF, Guns 

~ 300 

~ 500 

~ 750 

Non-Inductive Strategy 

H-mode 



   HHFW Heating & CD Studies of NSTX H-Mode Plasmas (Taylor)  June 1-3, 2011 19th Conference on RF in Plasmas  

•  In 2005 could not maintain RF coupling during Ip = 250 kA HHFW H-mode due  
 to poor plasma position control at L-H transitions 

• Sustained HHFW H-mode at Ip = 300 kA in 2010 made possible by  
 reduced plasma control system latency: 

  ITB formed during H-mode 

  Positive feedback between ITB, high Te(0) and RF CD 
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Te(0) 3 keV 

Time of GENRAY-ADJ analysis 

Ip = 300 kA 

BT(0) = 0.55 T 

Deuterium 

 kφ = - 8 m-1 
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GENRAY/ADJ-QL 

16 

IRFCD ~ 115 kA/MW 

Shot 138506 

Time = 0.382 s 

IP = 300 kA 

BT = 5.5 kG 

Deuterium 

RF H-mode 

r/a 
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TRANSP-TORIC simulation, assuming 100% RF coupling  
(ηeff = 100%), predicts IBootstrap = 220 kA and IRF = 120 kA 

17 

Time of GENRAY-ADJ analysis 

TORIC-TRANSP modeling for ηeff = 100% 



   HHFW Heating & CD Studies of NSTX H-Mode Plasmas (Taylor)  June 1-3, 2011 19th Conference on RF in Plasmas  

80% of the non-inductive current is generated inside the ITB 
in the Ip = 300 kA HHFW H-mode  
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•  New Motional Stark Effect – Laser Induced Fluorescence (MSE-LIF) 
diagnostic will provide current profile measurements during HHFW H-modes 

TORIC-TRANSP modeling for ηeff = 100% 

HHFW H-Mode 

IBS 130 kA 

IRF 70 kA 

fNI 0.65 

For ηeff = 60% 
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Improved antenna conditioning produced ELM-free-like 
HHFW H-modes at Ip = 650 kA with PRF ≥ 2.5 MW 
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•  Substantial increase in stored energy during H-mode 

•  Stored energy increase is accompanied by edge oscillations and small ELMs 

•  Sustained Te(0) = 5 - 6 keV 

Ip = 650 kA, 

BT(0) = 0.55 T 

He, kφ = - 8 m-1 
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GENRAY-ADJ 

PRF = 1 MW 

Ip = 650 kA, 
BT(0) = 0.55 T 

Helium 
kφ = - 8 m-1 

GENRAY-ADJ 
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IRFCD and IBootstrap decline as the plasma slowly transitions 
from L-Mode to H-Mode 
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TORIC-TRANSP modeling for ηeff = 100% 
Times of GENRAY-ADJ analysis 

L-mode       H-mode 

PRF = 2.7 MW 
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fNI decreases from ~ 0.5 in L-mode to ~ 0.35 in H-mode as  
Pe(R) broadens & RF deposition moves more off-axis 
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TORIC-TRANSP modeling for ηeff = 100% 

For ηeff = 55% 

L-Mode H-Mode 

IBootstrap 110 kA 80 kA 

IRFCD 230 kA 140 kA 

fNI 0.5 0.35 

ΔWT ~ 25 kJ, τ ~ 17 ms  ηeff ~ 55% 
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HHFW Heating of NBI H-Mode Plasmas 
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Broad Te profile increase with kφ = -13 m-1 HHFW heating of  
Ip = 900 kA, BT(0) = 0.55 T, Deuterium NBI H-mode plasma 

Before 
HHFW 

Heating 

•  Identical Te and ne H-mode profiles before HHFW power onset 

•  During HHFW heating, ne profile remains unchanged and plasma 
  stayed in H-mode 
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PRF = 1.9 MW 
PNBI = 2 MW 

During 
HHFW 

Heating 
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TRANSP-TORIC analysis predicts ~ 50% of PRF leaving antenna 
is coupled to Ip = 900 kA ELM-free NBI H-mode plasma 

•  Fraction of PRF absorbed within LCFS  
(ηeff) obtained from TRANSP-calculated  
electron stored energy: 
WeX – from HHFW+NBI H-mode 

WeR – from matched NBI H-mode 

WeP – using χe from NBI H-mode to predict  
Te in HHFW+NBI H-mode 

•  ηeff = (WeX-WeR)/(WeP-WeR) = 0.53 ± 0.07 

•  TORIC used to calculate the power  
absorbed by electrons (PeP) assuming  
100% RF plasma absorption 

•  Electron absorption, PeA= ηeff × PeP 
For PRF = 1.9 MW: 

–  0.7 MW        electrons 

–  0.3 MW        ions 

•  fNI ~ 0.3 (IBootstrap = 180 kA, [IRFCD+INBICD] = 60 kA) 
25 

k|| = -13 m-1 



   HHFW Heating & CD Studies of NSTX H-Mode Plasmas (Taylor)  June 1-3, 2011 19th Conference on RF in Plasmas  

GENRAY ray tracing analysis predicts broad deposition, with 
very little RF power reaching magnetic axis  

•  75% of RF power directly heats electrons 

•  25% of RF power accelerates NBI fast-ions, predominantly well off axis 

•  GENRAY deposition results similar to TRANSP-TORIC  
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GENRAY 

For 1 MW of 
Coupled RF Power 

Ip = 900 kA 

BT(0) = 0.55 T 

Deuterium 

  kφ = - 13 m-1 
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CQL3D Fokker-Planck code predicts significant fast-ion 
losses in Ip = 900 kA ELM-free HHFW+NBI H-mode 

•  Without fast-ion loss CQL3D predicts much higher 
neutron production rate (Sn) than is measured 

•  Simple-banana-loss model predicts  
Sn ~ 20% below measured Sn : 

  Assumes prompt loss of  
fast-ions with a gyro radius 
+ banana width > distance  
to LCFS 

  ~ 60% RF power to fast-ions  
is promptly lost  

•  Significant prompt fast-ion loss is due to 
RF wave-field acceleration occurring 
predominantly off-axis  
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HHFW+NBI H-modes can exhibit a significant RF power flow 
in the scrape-off layer (SOL) to the lower divertor 

•  RF power flow produces local hot region on divertor plate that 
moves with changes in the magnetic field pitch 

•  ELMs increase RF power flow to the divertor 
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J. C. Hosea, et al., Poster A33"
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AORSA simulations of NBI+HHFW H-modes predict large 
amplitude coaxial modes at long launch wavelengths 

•  Large amplitude, non-propagating coaxial modes 
form in SOL can dissipate significant RF power if 
collisionally damped  
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D. L. Green, et al., Poster A36"

AORSA full wave 
simulation of  

NBI+HHFW H-mode 

PRF=1.9 MW  

PNBI = 2 MW 

Ip = 1 MA 

BT(0) = 0.55 T 

130608 @ 0.353 ms 
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Summary 
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Backup Slides 
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GENRAY ray tracing code calculates the HHFW power 
deposition and RF-driven current profile 

•  GENRAY is an all-waves general ray tracing code for RF wave 
propagation and absorption in the geometrical optics approximation 

•  GENRAY outputs ray trajectory and absorption data to other codes 

•  Recently, an all-frequencies, linear, momentum conserving CD 
calculation has been added to GENRAY (GENRAY/ADJ-QL) 

  The CD calculation utilizes an adjoint (ADJ) approach based on the 

relativistic Coulomb Fokker-Planck collision operator and the relativistic 

quasi-linear (QL) flux 

37 
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TRANSP-TORIC code provides a time-dependent calculation 
of the HHFW power deposition and CD profile 

•  TORIC full-wave RF code has been integrated into the TRANSP 
plasma transport code 

•  TORIC solves the kinetic wave equation in a 2-D axisymmetric 
equilibrium 

•  Solves for a fixed frequency with a linear plasma response 

•  Present implementation of TORIC in TRANSP can model HHFW 
deposition but cannot evolve the fast-ion energy distribution self 
consistently: 

  As a result, the neutron rate (Sn) calculated by TRANSP-TORIC reflects  

the beam-target reactions for the NBI fast-ions without HHFW acceleration 
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CQL3D Fokker-Planck code can predict the RF-driven current 
and the wave field acceleration of the NBI fast-ions 

•  CQL3D is a relativistic collisional, quasi-linear, 3-D code which 
solves a bounced-averaged Fokker Planck equation: 

  Uses the ray trajectories and absorption input from GENRAY to  

calculate the RF power deposition and CD profile 

  CQL3D also computes wave field effects on the fast-ions & predicts Sn 

•  Using input data from TRANSP at a particular time-of-interest (TOI), 
CQL3D can be "run to equilibrium" in order to estimate Sn 

•  CQL3D currently provides two fast-ion loss calculation options: 

  "No loss" (NL) option, which assumes zero ion gyroradius and  

banana width 

  "Simple-banana-loss" (SBL) calculation which assumes that any ion 

which has a gyroradius + banana width > than the distance to the last 

closed flux surface (LCFS) is promptly lost 
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•  Density increased during HHFW heating 
probably due to fast-ion interaction with  
the antenna 

•  Much lower Te(0) and higher ne(0) than  
HHFW H-mode resulted in lower 
 IRFCD ~ 10-20 kA 

•  50% of injected NBI fast-ions are  
promptly lost at this low Ip 

•  IBootstrap =  60-90 kA, INBICD = 50-70 kA 

•  ηeff was only ~ 40%:  

  high nedge ~ 1-2 x1012 m-3 (ncrit ~ 5x1011m-3), 
probably caused more surface wave loss 

40 

140352/3 

140352B04(NBI+RF) 140353B04 (NBI) 
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40% of coupled RF power accelerates NBI fast-ions which are 
then promptly lost from the plasma 
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Shot 140352 

Time = 0.450 s 

IP = 300 kA 

BT = 0.55 T 

Deuterium 

HHFW+NBI H-mode 

GENRAY/ADJ-QL 

IRFCD ~ 20 kA/MW 
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HHFW heating of Ip = 300 kA NBI H-mode produces a small 
increase in fNI, due to increased IBootstrap 
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TORIC-TRANSP modeling for ηeff = 100%: 

HHFW+NBI NBI 

IBS (kA) 60 kA 40 kA 

INBI (kA) 65 kA 75 kA 

IRF (kA) 10 kA - 

fNI 0.45 0.40 

For ηeff = 40% 
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HHFW double end-fed upgrade was installed in 2009, shifted 
ground from end to strap center to increase maximum PRF 

•  Designed to bring system 
voltage limit with plasma  
(~15 kV) to limit in vacuum  
(~25 kV): 

  Increasing PRF ~ 2.8 times 

•  Antenna upgrade was 
beneficial: 

  Reached arc-free PRF ~ 4 MW 
after a few weeks of operation 
at the end of 2009 campaign 

•  In 2008-9, Li wall conditioning 
was observed to enhance 
HHFW coupling by decreasing 
edge density  
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Fast-ion diagnostic measures no change in fast-ion density 
during HHFW heating, consistent with CQL3D modeling  
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Compare two closely matched Ip = 900 kA ELM-free H-mode 
plasmas: NBI+HHFW and NBI 

•  IP = 900 kA, BT = 0.55 T, PNBI = 2 MW, PRF = 1.9 MW, k|| = 13 m-1 

•  Benign MHD activity in both plasmas 

•  MSE q profiles unavailable 

•  Times-of-interest (TOI) 0.248 s and 0.315 s 
45 


