





# HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas\*

#### Gary Taylor<sup>1</sup>

CompX
General Atomics
FIU

INL

**Johns Hopkins U** 

Columbia U

LANL

LLNL

Lodestar

MIT

**Nova Photonics** 

New York U

ORNL

**PPPL** 

Princeton U

**Purdue U** 

SNL

Think Tank, Inc.

**UC Davis** 

**UC Irvine** 

UCLA

UCSD

U Colorado

**U Illinois** 

**U** Maryland

**U** Rochester

**U Washington** 

**U Wisconsin** 

P. T. Bonoli<sup>2</sup>, D. L. Green<sup>3</sup>, R. W. Harvey<sup>4</sup>, J. C. Hosea<sup>1</sup>, E. F. Jaeger<sup>3</sup>, B. P. LeBlanc<sup>1</sup>, C. K. Phillips<sup>1</sup>, P. M. Ryan<sup>3</sup>, E. J. Valeo<sup>1</sup>, J. R. Wilson<sup>1</sup>,

J. C. Wright<sup>2</sup>, and the NSTX Team

<sup>1</sup>Princeton Plasma Physics Laboratory, Princeton, NJ, USA <sup>2</sup>MIT Plasma Science and Fusion Center, Cambridge, MA, USA <sup>3</sup>Oak Ridge National Laboratory, Oak Ridge, TN, USA

<sup>4</sup>CompX, La Jolla, CA, USA

19<sup>th</sup> Topical Conference on Radio Frequency Power in Plasmas Newport, Rhode Island, USA, June 1-3, 2011

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

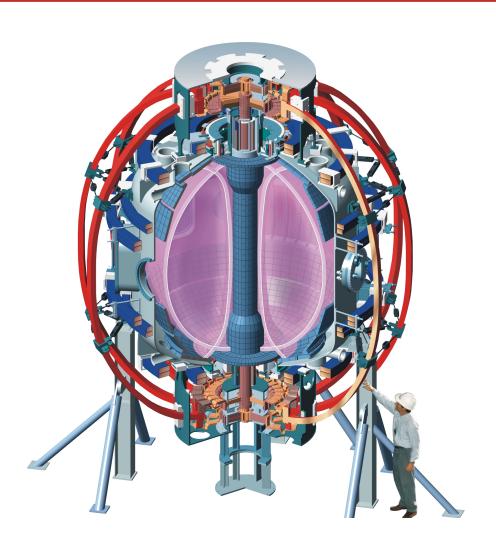
Culham Sci Ctr

\*Work supported by US DoE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725

Introduction to HHFW Heating on NSTX

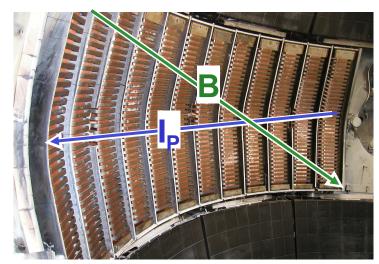
Introduction to HHFW Heating on NSTX

HHFW-Generated H-Mode Plasmas

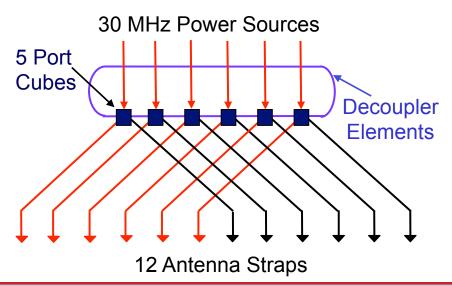

- Introduction to HHFW Heating on NSTX
- HHFW-Generated H-Mode Plasmas

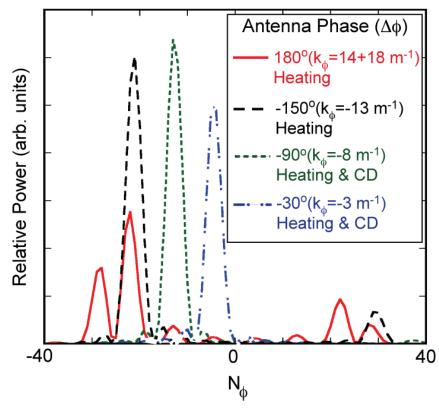
HHFW Heating of NBI H-Mode Plasmas

- Introduction to HHFW Heating on NSTX
- HHFW-Generated H-Mode Plasmas


- HHFW Heating of NBI H-Mode Plasmas
- Summary

# NSTX is a high $\beta$ , low aspect ratio, spherical torus with both 90 keV NBI and 30 MHz HHFW heating

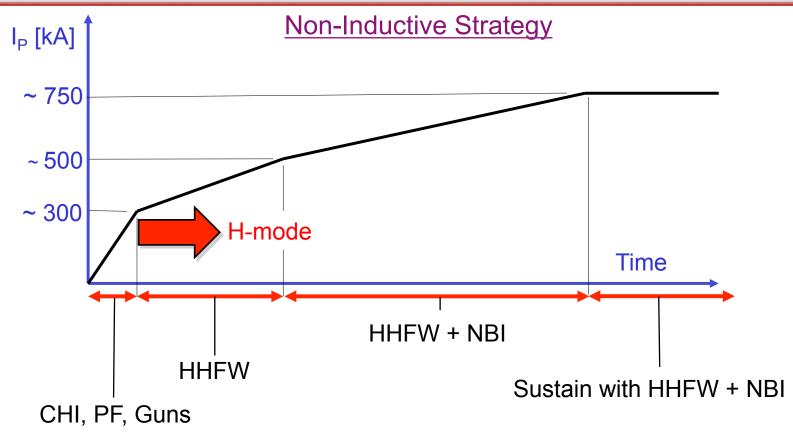




- R = 0.86 m
- A > 1.27
- $I_p < 1.5 MA$
- $B_t(0) = 0.55 T$
- $\beta_t \le 40\%, \ \beta_N \le 7$
- 90 keV D P<sub>NBI</sub> ≤ 6 MW
- 30 MHz P<sub>RF</sub> ≤ 6 MW
  - Many fast wave ion resonances: 7-11  $\Omega_D$
  - Strong single pass direct absorption on electrons

# Well defined antenna spectrum, ideal for studying phase dependence of heating & current drive (CD)



12-strap antenna extends toroidally 90°






 Upgraded from single to double feed straps, with center grounds, in 2009 to reduce electric fields near Faraday shield ~ 1.5 x for same strap currents

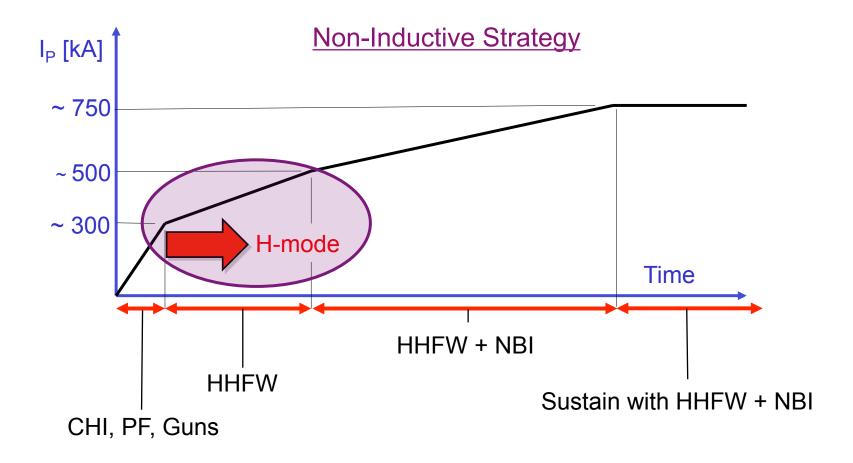
P. M. Ryan, et al., Poster A32

# HHFW heating and CD are being developed for non-inductive ramp-up and bulk electron heating



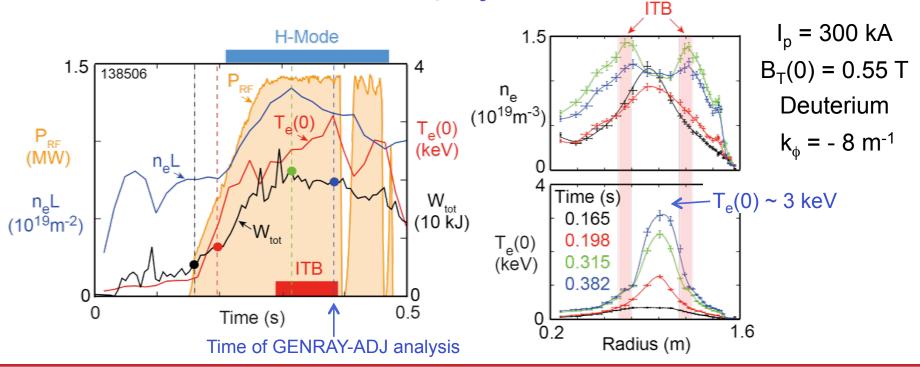
- Two major roles for HHFW heating and CD in NSTX:
  - ➤ Enable fully non-inductive plasma current (I<sub>p</sub>) ramp-up through bootstrap CD (BSCD) and direct RFCD during early HHFW H-mode
  - ➤ Provide bulk electron heating during I<sub>D</sub> flat top, during NBI H-Mode

 Near-term approach to assess HHFW heating during I<sub>p</sub> ramp-up has been to heat low I<sub>p</sub> ohmic (~ 300 kA) plasmas to access 100% non-inductive CD

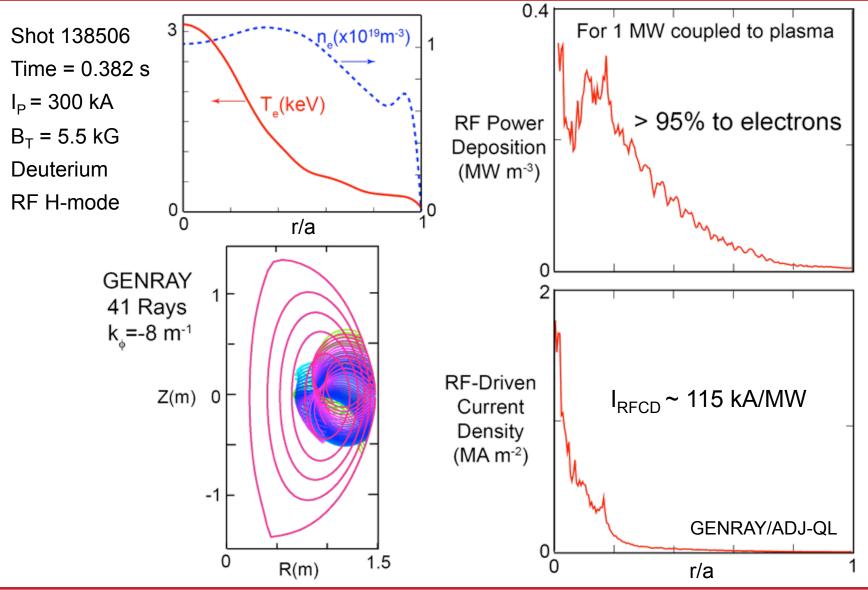

- Near-term approach to assess HHFW heating during I<sub>p</sub> ramp-up has been to heat low I<sub>p</sub> ohmic (~ 300 kA) plasmas to access 100% non-inductive CD
- Improved antenna/plasma conditioning produced HHFW-generated
   H-mode plasmas with I<sub>p</sub> = 650 kA, B<sub>T</sub>(0) = 0.55 T when P<sub>RF</sub> ≥ 2.5 MW

- Near-term approach to assess HHFW heating during I<sub>p</sub> ramp-up has been to heat low I<sub>p</sub> ohmic (~ 300 kA) plasmas to access 100% non-inductive CD
- Improved antenna/plasma conditioning produced HHFW-generated
   H-mode plasmas with I<sub>p</sub> = 650 kA, B<sub>T</sub>(0) = 0.55 T when P<sub>RF</sub> ≥ 2.5 MW
- NBI + HHFW H-mode experiments at I<sub>p</sub> = 0.7 1 MA, aided by Li conditioning, produced significant bulk electron heating when HHFW was coupled into the plasma:

- Near-term approach to assess HHFW heating during I<sub>p</sub> ramp-up has been to heat low I<sub>p</sub> ohmic (~ 300 kA) plasmas to access 100% non-inductive CD
- Improved antenna/plasma conditioning produced HHFW-generated
   H-mode plasmas with I<sub>p</sub> = 650 kA, B<sub>T</sub>(0) = 0.55 T when P<sub>RF</sub> ≥ 2.5 MW
- NBI + HHFW H-mode experiments at I<sub>p</sub> = 0.7 1 MA, aided by Li conditioning, produced significant bulk electron heating when HHFW was coupled into the plasma:
  - However HHFW acceleration of NBI fast-ions produced enhanced fast-ion losses during HHFW heating

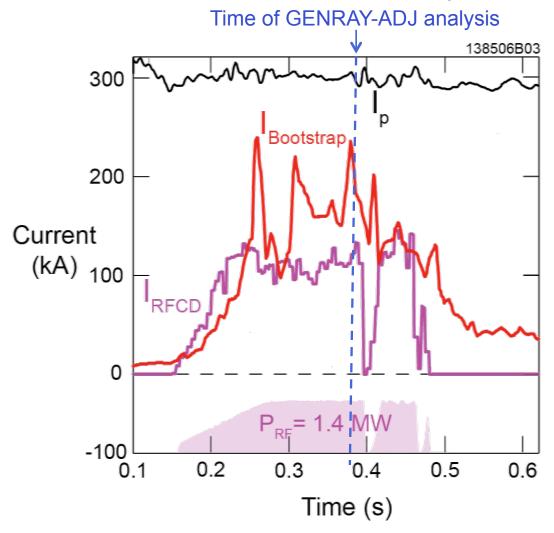

- Near-term approach to assess HHFW heating during I<sub>p</sub> ramp-up has been to heat low I<sub>p</sub> ohmic (~ 300 kA) plasmas to access 100% non-inductive CD
- Improved antenna/plasma conditioning produced HHFW-generated
   H-mode plasmas with I<sub>p</sub> = 650 kA, B<sub>T</sub>(0) = 0.55 T when P<sub>RF</sub> ≥ 2.5 MW
- NBI + HHFW H-mode experiments at I<sub>p</sub> = 0.7 1 MA, aided by Li conditioning, produced significant bulk electron heating when HHFW was coupled into the plasma:
  - However HHFW acceleration of NBI fast-ions produced enhanced fast-ion losses during HHFW heating
  - Conducted extensive studies of HHFW heating and edge power loss mechanisms during both ELMing and ELM-free H-modes

### **HHFW-Generated H-Mode Plasmas**




# Achieved sustained $I_p$ = 300 kA HHFW H-mode, with internal transport barrier (ITB) and $T_e(0) \sim 3$ keV with $P_{RF}$ = 1.4 MW

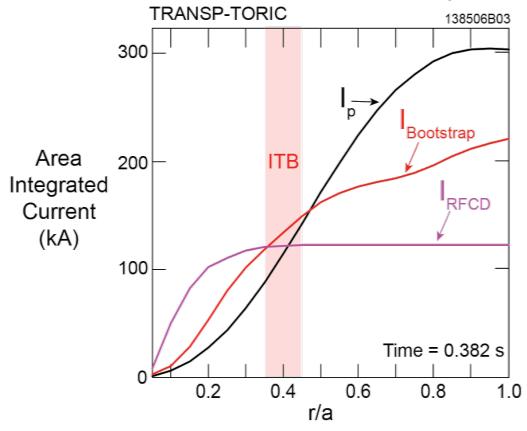
- In 2005 could not maintain RF coupling during I<sub>p</sub> = 250 kA HHFW H-mode due to poor plasma position control at L-H transitions
- Reduced plasma control system latency made possible sustained
   I<sub>D</sub> = 300 kA HHFW-generated H-mode in 2010:
  - ightharpoonup T<sub>e</sub>(0) ~ 3 keV achieved with only P<sub>RF</sub> = 1.4 MW
  - > ITB formed during H-mode
  - Positive feedback between ITB, high T<sub>e</sub>(0) and RF CD




# GENRAY-ADJ predicts peaked RF deposition on electrons and RF CD efficiency ξ<sub>CD</sub> ~ 115 kA/MW



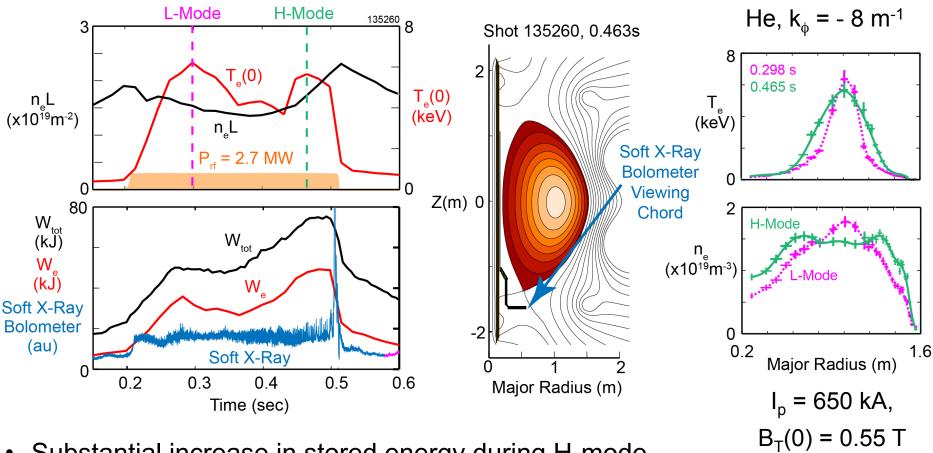
# TRANSP-TORIC simulation, assuming 100% RF coupling ( $\eta_{eff}$ = 100%), predicts $I_{Bootstrap}$ = 220 kA and $I_{RF}$ = 120 kA


#### TORIC-TRANSP modeling for $\eta_{eff} = 100\%$



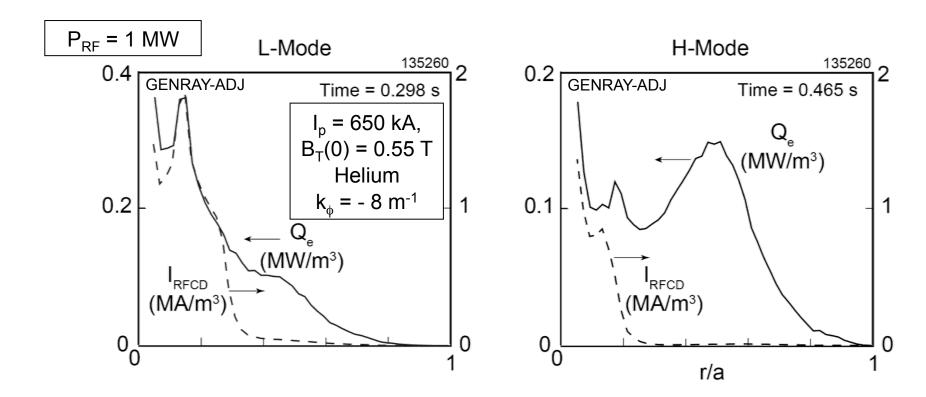
- TRANSP-TORIC predicts  $\xi_{CD}$ ~ 85 kA/MW at GENRAY analysis time:
  - Compared to GENRAYξ<sub>CD</sub>~ 115 kA/MW
- $\eta_{\text{eff}} = \Delta W_{\text{T}}/(\tau^* P_{\text{RF}})$   $\Delta W_{\text{T}} \sim 15 \text{ kJ}$   $\tau \sim 15 \text{ ms}$   $P_{\text{RF}} \sim 1.4 \text{ MW}$   $\rightarrow \eta_{\text{eff}} \sim 60\%$

# 80% of the non-inductive current is generated inside the ITB in the $I_D$ = 300 kA HHFW H-mode


#### TORIC-TRANSP modeling for $\eta_{eff}$ = 100%



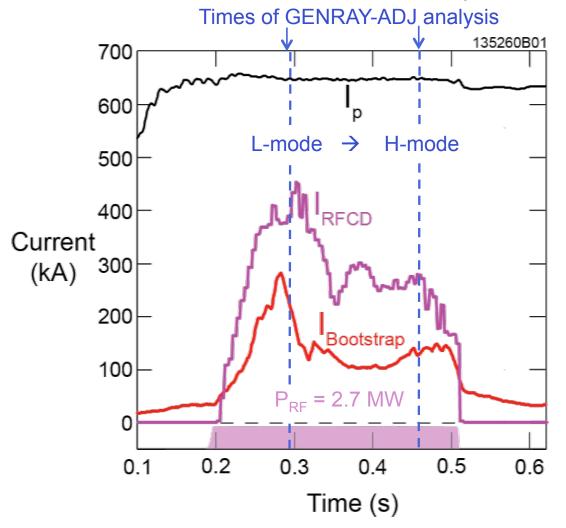
For 
$$\eta_{\text{eff}} = 60\%$$


| I <sub>BS</sub> | 130 kA |
|-----------------|--------|
| I <sub>RF</sub> | 70 kA  |
| f <sub>NI</sub> | 0.65   |

# Improved antenna conditioning produced ELM-free-like HHFW H-modes at I<sub>p</sub> = 650 kA with P<sub>RF</sub> ≥ 2.5 MW

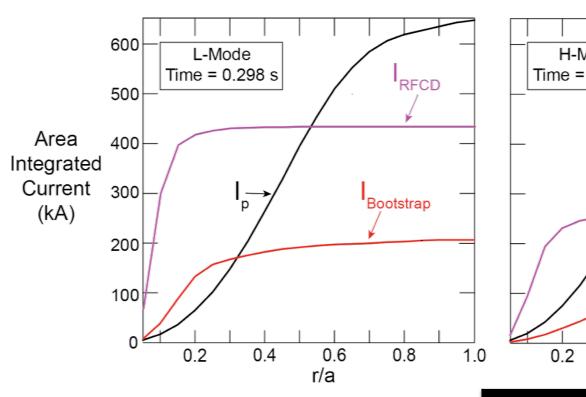


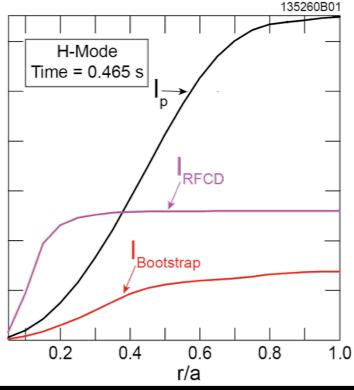
- Substantial increase in stored energy during H-mode
- Stored energy increase is accompanied by edge oscillations and small ELMs
- Sustained  $T_e(0) = 5 6 \text{ keV}$


## Very broad RF electron power deposition profile ( $Q_e$ ) in H-mode; off-axis trapping significantly reduces $\xi_D$



- RF power coupled to plasma directly heats electrons, no ion heating
- $\xi_{CD}$ ~ 220 kA/MW in L-Mode,  $\xi_{CD}$ ~ 130 kA/MW in H-Mode


## I<sub>RFCD</sub> and I<sub>Bootstrap</sub> decline as the plasma slowly transitions from L-Mode to H-Mode

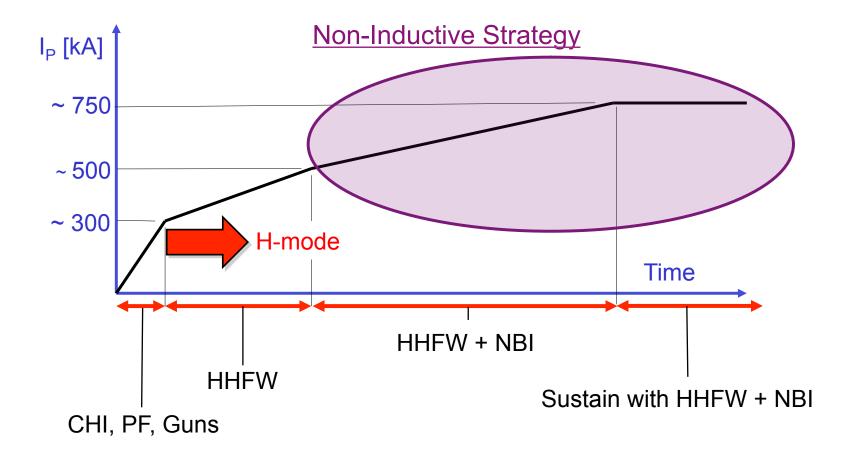

#### TORIC-TRANSP modeling for $\eta_{eff}$ = 100%



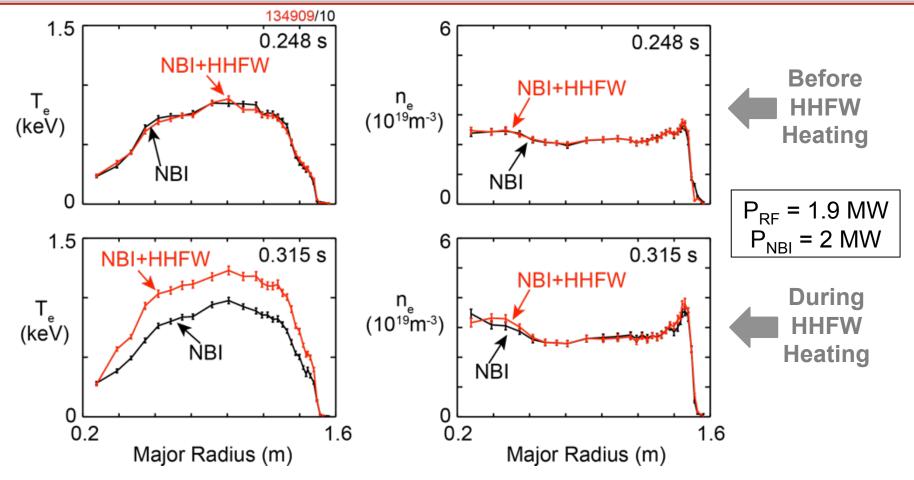
### f<sub>NI</sub> decreases from ~ 0.5 in L-mode to ~ 0.35 in H-mode as P<sub>e</sub>(R) broadens & RF deposition moves more off-axis

#### TORIC-TRANSP modeling for $\eta_{eff}$ = 100%






 $\Delta W_T \sim 25$  kJ,  $\tau \sim 17$  ms  $\rightarrow \eta_{eff} \sim 55\%$ 


For  $\eta_{\text{eff}} = 55\% \rightarrow$ 

|                   | L-Mode | H-Mode |
|-------------------|--------|--------|
| Bootstrap         | 110 kA | 80 kA  |
| I <sub>RFCD</sub> | 230 kA | 140 kA |
| f <sub>NI</sub>   | 0.5    | 0.35   |

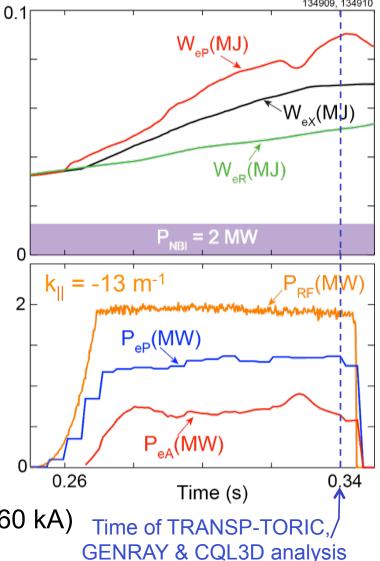
### **HHFW Heating of NBI H-Mode Plasmas**



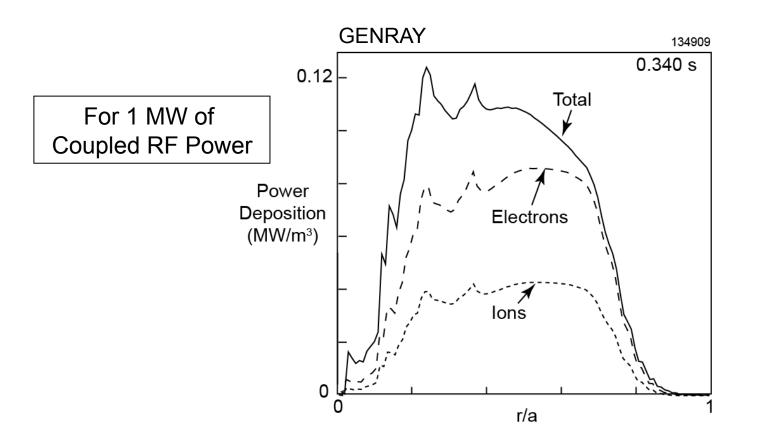
# Broad $T_e$ profile increase when $k_{\phi}$ = -13 m<sup>-1</sup> HHFW heats $I_p$ = 900 kA, $B_T(0)$ = 0.55 T, Deuterium NBI H-mode plasma



- Identical T<sub>e</sub> and n<sub>e</sub> H-mode profiles before HHFW power onset
- $\bullet$  During HHFW heating,  $\rm n_{\rm e}$  profile remains unchanged and plasma stays in H-mode


# TRANSP-TORIC analysis predicts $\eta_{eff} \sim 50\%$ for $I_p$ = 900 kA ELM-free NBI H-mode plasma

 η<sub>eff</sub> obtained from W<sub>e</sub> calculated by TRANSP-TORIC:


 $W_{eP}-$  using  $\chi_e$  from NBI H-mode to predict  $T_e$  in HHFW+NBI H-mode

- $\eta_{\text{eff}} = (W_{\text{eX}} W_{\text{eR}}) / (W_{\text{eP}} W_{\text{eR}}) = 0.53 \pm 0.07$
- If  $P_{eP}$  is the power absorbed by electrons calculated by TORIC assuming  $\eta_{eff}$  = 100%
- Electron RF absorption, P<sub>eA</sub>= η<sub>eff</sub> × P<sub>eP</sub>
   For P<sub>RF</sub> = 1.9 MW:
  - − 0.7 MW ⇒ electrons
  - − 0.3 MW fast-ions





### GENRAY ray tracing analysis predicts broad deposition, with very little RF power reaching magnetic axis



Deuterium

$$k_{\phi} = -13 \text{ m}^{-1}$$

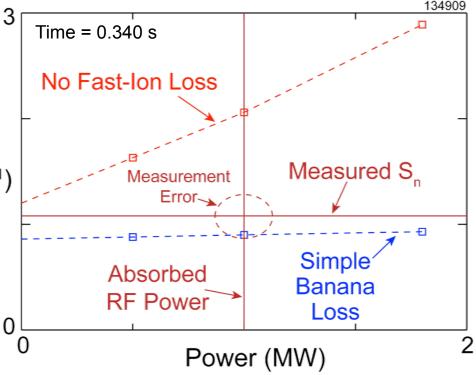
$$I_{\rm p} = 900 \text{ kA}$$

$$B_{T}(0) = 0.55 T$$

- 75% of RF power directly heats electrons
- 25% of RF power accelerates NBI fast-ions off axis

**HHFW Heating & CD Studies of NSTX H-Mode Plasmas (Taylor)** 

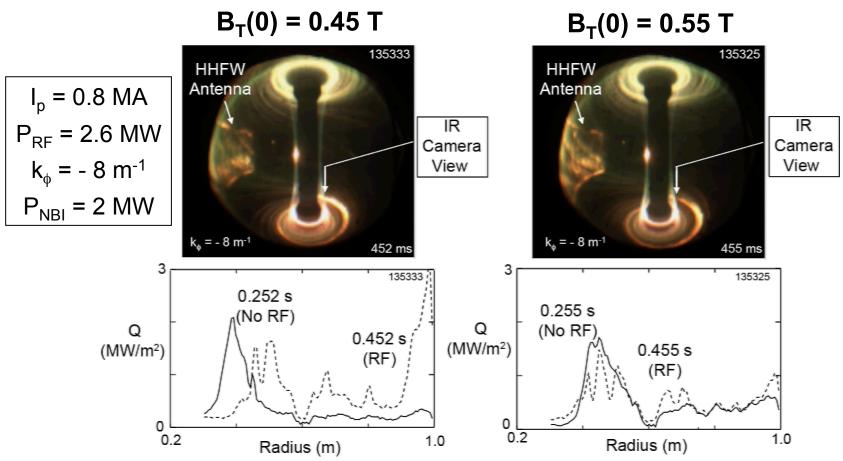
June 1-3, 2011


### CQL3D Fokker-Planck code predicts significant fast-ion losses in $I_p = 900 \text{ kA ELM-free HHFW+NBI H-mode}$

Without fast-ion loss CQL3D predicts much higher neutron production rate (S<sub>n</sub>) than is measured

Simple-banana-loss model predicts  $S_n \sim 20\%$  below measured  $S_n$ :

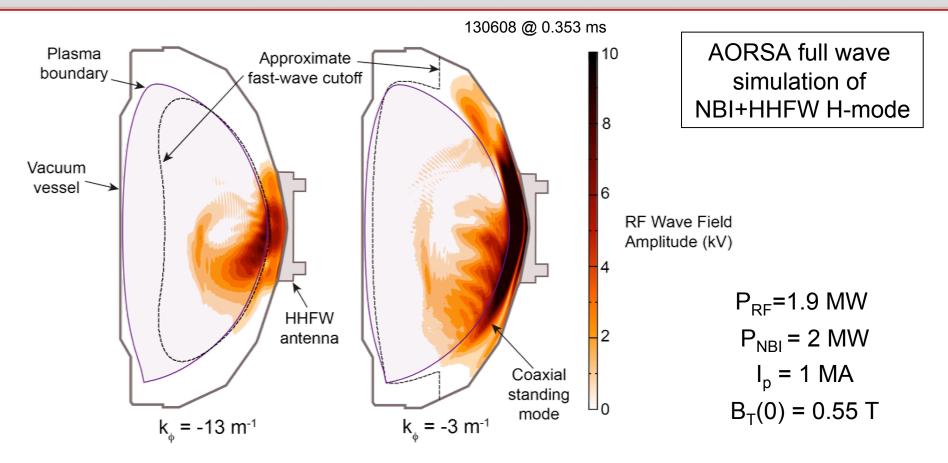
> $S_n$ > Assumes prompt loss of  $(10^{14} s^{-1})$ fast-ions with a gyro radius + banana width > distance to LCFS


> ~ 60% RF power to fast-ions is promptly lost



Significant prompt fast-ion loss is due to RF wave-field acceleration occurring predominantly off-axis

June 1-3, 2011


## HHFW+NBI H-modes can exhibit a significant RF power flow in the scrape-off layer (SOL) to the lower divertor



- RF power flow produces local hot region on divertor plate that moves with changes in the magnetic field pitch
- ELMs increase RF power flow to the divertor

J. C. Hosea, et al., Poster A33

## AORSA simulations of NBI+HHFW H-modes predict large amplitude coaxial modes at long launch wavelengths



 Large amplitude, non-propagating coaxial modes form in SOL can dissipate significant RF power if collisionally damped

D. L. Green, et al., Poster A36

• Generated HHFW-only "ELM-free-like" H-modes that have rising  $W_{tot}$ , high  $T_{\rm e}(0)$ ,  $f_{\rm NI}$  up to 0.65, and sometimes ITBs



- Generated HHFW-only "ELM-free-like" H-modes that have rising  $W_{tot}$ , high  $T_{e}(0)$ ,  $f_{NI}$  up to 0.65, and sometimes ITBs
- Improved antenna & plasma conditioning enabled a broad increase in T<sub>e</sub>(R) when HHFW was coupled to an ELM-free NBI-generated H-mode





- Generated HHFW-only "ELM-free-like" H-modes that have rising W<sub>tot</sub>, high T<sub>e</sub>(0), f<sub>NI</sub> up to 0.65, and sometimes ITBs
- Improved antenna & plasma conditioning enabled a broad increase in T<sub>e</sub>(R) when HHFW was coupled to an ELM-free NBI-generated H-mode
- A significant RF power flow along field lines in the SOL produced a hot region on the lower divertor plate that moves with change in field pitch



- Generated HHFW-only "ELM-free-like" H-modes that have rising W<sub>tot</sub>, high T<sub>e</sub>(0), f<sub>NI</sub> up to 0.65, and sometimes ITBs
- Improved antenna & plasma conditioning enabled a broad increase in T<sub>e</sub>(R) when HHFW was coupled to an ELM-free NBI-generated H-mode
- A significant RF power flow along field lines in the SOL produced a hot region on the lower divertor plate that moves with change in field pitch
- 3-D simulations that include the SOL predict modes in the SOL and plasma edge that appear qualitatively similar to observed RF power flow

- Generated HHFW-only "ELM-free-like" H-modes that have rising W<sub>tot</sub>, high T<sub>e</sub>(0), f<sub>NI</sub> up to 0.65, and sometimes ITBs
- Improved antenna & plasma conditioning enabled a broad increase in T<sub>e</sub>(R) when HHFW was coupled to an ELM-free NBI-generated H-mode
- A significant RF power flow along field lines in the SOL produced a hot region on the lower divertor plate that moves with change in field pitch
- 3-D simulations that include the SOL predict modes in the SOL and plasma edge that appear qualitatively similar to observed RF power flow
- Similar edge/SOL RF power flows may be important in ITER NBI+ICRF
   H-mode scenarios, these need to be modeled with advanced RF codes

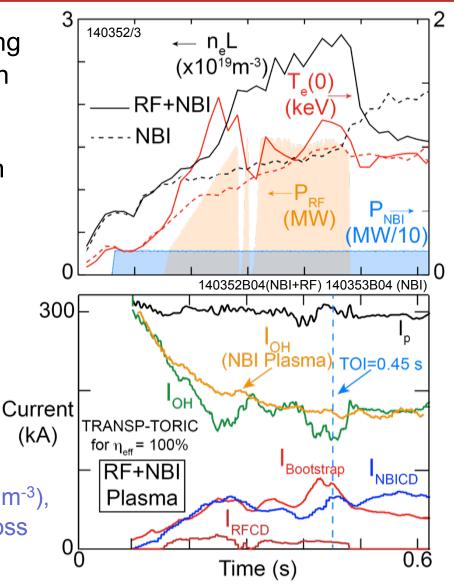
- Generated HHFW-only "ELM-free-like" H-modes that have rising W<sub>tot</sub>, high T<sub>e</sub>(0), f<sub>NI</sub> up to 0.65, and sometimes ITBs
- Improved antenna & plasma conditioning enabled a broad increase in T<sub>e</sub>(R) when HHFW was coupled to an ELM-free NBI-generated H-mode
- A significant RF power flow along field lines in the SOL produced a hot region on the lower divertor plate that moves with change in field pitch
- 3-D simulations that include the SOL predict modes in the SOL and plasma edge that appear qualitatively similar to observed RF power flow
- Similar edge/SOL RF power flows may be important in ITER NBI+ICRF
   H-mode scenarios, these need to be modeled with advanced RF codes

### Backup Slides

## GENRAY ray tracing code calculates the HHFW power deposition and RF-driven current profile

- GENRAY is an all-waves general ray tracing code for RF wave propagation and absorption in the geometrical optics approximation
- GENRAY outputs ray trajectory and absorption data to other codes
- Recently, an all-frequencies, linear, momentum conserving CD calculation has been added to GENRAY (GENRAY/ADJ-QL)
  - ➤ The CD calculation utilizes an adjoint (ADJ) approach based on the relativistic Coulomb Fokker-Planck collision operator and the relativistic quasi-linear (QL) flux

## TRANSP-TORIC code provides a time-dependent calculation of the HHFW power deposition and CD profile

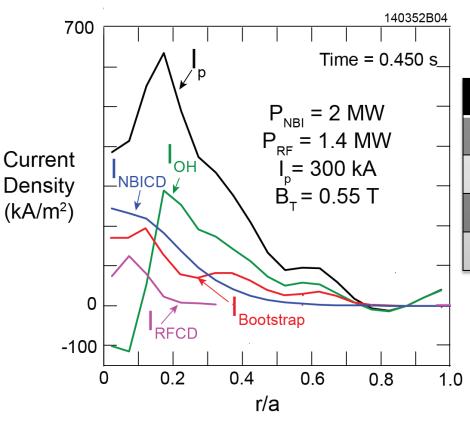

- TORIC full-wave RF code has been integrated into the TRANSP plasma transport code
- TORIC solves the kinetic wave equation in a 2-D axisymmetric equilibrium
- Solves for a fixed frequency with a linear plasma response
- Present implementation of TORIC in TRANSP can model HHFW deposition but cannot evolve the fast-ion energy distribution self consistently:
  - ➤ As a result, the neutron rate (S<sub>n</sub>) calculated by TRANSP-TORIC reflects the beam-target reactions for the NBI fast-ions without HHFW acceleration

### CQL3D Fokker-Planck code can predict the RF-driven current and the wave field acceleration of the NBI fast-ions

- CQL3D is a relativistic collisional, quasi-linear, 3-D code which solves a bounced-averaged Fokker Planck equation:
  - ➤ Uses the ray trajectories and absorption input from GENRAY to calculate the RF power deposition and CD profile
  - CQL3D also computes wave field effects on the fast-ions & predicts S<sub>n</sub>
- Using input data from TRANSP at a particular time-of-interest (TOI),
   CQL3D can be "run to equilibrium" in order to estimate S<sub>n</sub>
- CQL3D currently provides two fast-ion loss calculation options:
  - "No loss" (NL) option, which assumes zero ion gyroradius and banana width
  - "Simple-banana-loss" (SBL) calculation which assumes that any ion which has a gyroradius + banana width > than the distance to the last closed flux surface (LCFS) is promptly lost

# Coupling $P_{RF} = 1.4$ MW into $I_p = 300kA$ , $P_{NBI} = 2$ MW H-mode resulted in lower $f_{NI}$ than the $I_p = 300kA$ HHFW H-mode

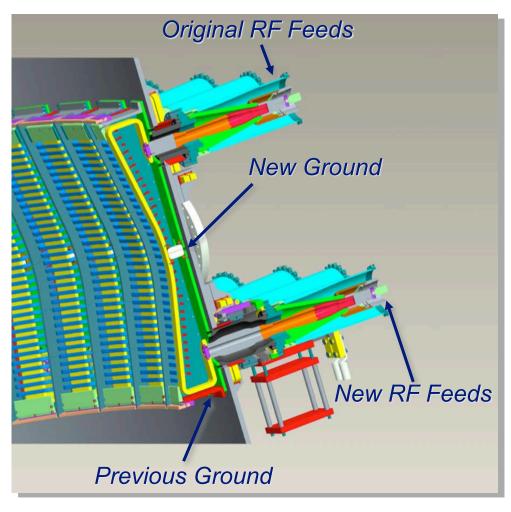
- Density increased during HHFW heating probably due to fast-ion interaction with the antenna
- Much lower T<sub>e</sub>(0) and higher n<sub>e</sub>(0) than HHFW H-mode resulted in lower
   → I<sub>RFCD</sub> ~ 10-20 kA
- 50% of injected NBI fast-ions are promptly lost at this low I<sub>p</sub>
- $I_{Bootstrap} = 60-90 \text{ kA}, I_{NBICD} = 50-70 \text{ kA}$
- $\eta_{\text{eff}}$  was only ~ 40%:
  - ⇒ high  $n_{edge} \sim 1-2 \times 10^{12} \, \text{m}^{-3} \, (n_{crit} \sim 5 \times 10^{11} \, \text{m}^{-3})$ , probably caused more surface wave loss




## 40% of coupled RF power accelerates NBI fast-ions which are then promptly lost from the plasma

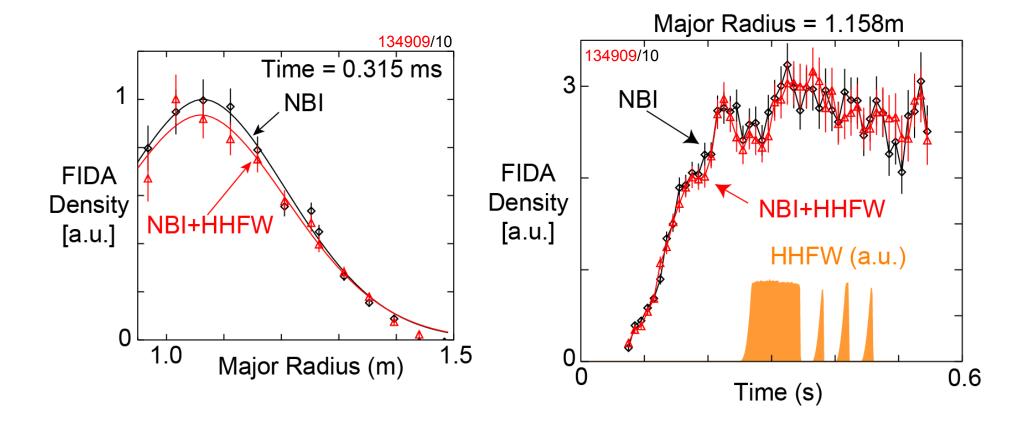


# HHFW heating of $I_p$ = 300 kA NBI H-mode produces a small increase in $f_{NI}$ , due to increased $I_{Bootstrap}$

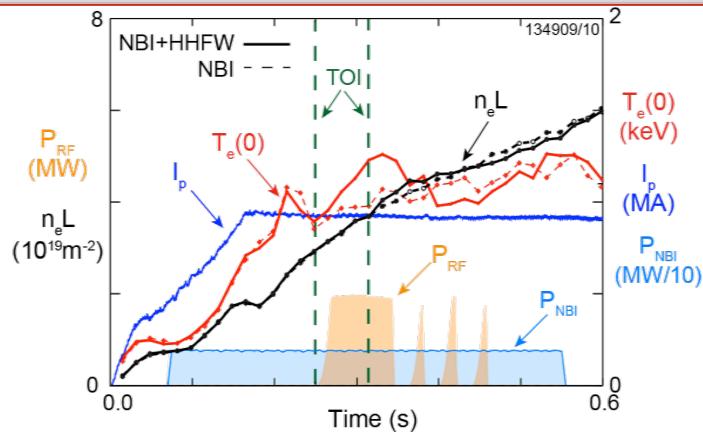

#### TORIC-TRANSP modeling for $\eta_{eff}$ = 100%:



| For $\eta_{\text{eff}} = 40\%$ |
|--------------------------------|
|--------------------------------|


| HHFW+NBI              |       | NBI   |
|-----------------------|-------|-------|
| I <sub>BS</sub> (kA)  | 60 kA | 40 kA |
| I <sub>NBI</sub> (kA) | 65 kA | 75 kA |
| I <sub>RF</sub> (kA)  | 10 kA | -     |
| f <sub>NI</sub>       | 0.45  | 0.40  |

### HHFW double end-fed upgrade was installed in 2009, shifted ground from end to strap center to increase maximum $P_{RF}$




- Designed to bring system voltage limit with plasma (~15 kV) to limit in vacuum (~25 kV):
  - $\rightarrow$  Increasing P<sub>RF</sub> ~ 2.8 times
- Antenna upgrade was beneficial:
  - ➤ Reached arc-free P<sub>RF</sub> ~ 4 MW after a few weeks of operation at the end of 2009 campaign
- In 2008-9, Li wall conditioning was observed to enhance HHFW coupling by decreasing edge density

## Fast-ion diagnostic measures no change in fast-ion density during HHFW heating, consistent with CQL3D modeling



## Compare two closely matched $I_p = 900 \text{ kA ELM-free H-mode}$ plasmas: NBI+HHFW and NBI



- $I_P = 900 \text{ kA}, B_T = 0.55 \text{ T}, P_{NBI} = 2 \text{ MW}, P_{RF} = 1.9 \text{ MW}, k_{||} = 13 \text{ m}^{-1}$
- Benign MHD activity in both plasmas
- MSE q profiles unavailable
- Times-of-interest (TOI) 0.248 s and 0.315 s