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Improved 3D Modeling and Pedestal Dynamics 
Models Allow Better Predictions of ELM Suppression 

•  Despite successfully mitigating ELMS with Resonant Magnetic 
Perturbations (RMPs) on many tokamaks, we still lack a good 
predictive model 

•  In a set of DIII-D discharges, it was found that the Vacuum 
Island Overlap Width (VIOW) correlates with ELM suppression* 

•  Actual mechanism of ELM suppression is more complicated 
than VIOW 
–  VIOW ignores plasma response (kinking, screening) 
–  Pedestal is probably not stochastic, so “IOW” may not be physical 

•  We apply advances in modeling capabilities and 
understanding of pedestal dynamics to develop new 
correlation criteria for ELM suppression; apply to ITER 

*Fenstermacher Phys. Plasmas 15, 056122 (2008) 
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•  Plasma tries to exclude magnetic islands 
–  “Screening”; where ωe is large (steep gradient 

region and core) 

•  RMPs drive (stable) modes to finite amplitude 
–  “Kink response” 
–  Driven reconnection; where ωe is small (pedestal 

top) 

Plasma Response to RMP Significantly Alters the 
Magnetic Fields in H-Mode Edge 
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•  Including plasma response is necessary 
to accurately model edge measurements 
–  Te, ne profiles in edge strongly affected by 

“kink response” (Shafer NI2.00006, this morning) 

–  Linear two-fluid modeling (M3D-C1) is 
successful in reproducing measured 
profiles 

NM Ferraro/APS-DPP/Nov. 2013 
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EPED Model Suggests ELM Suppression Requires 
Enhanced Transport Localized at Pedestal Top  

•  EPED Model of pedestal structure: 
–  Gradient determined by local KBM 

stability 
–  Width grows until global PB stability 

threshold is reached (ELM) 
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EPED Model Suggests ELM Suppression Requires 
Enhanced Transport Localized at Pedestal Top  

•  EPED Model of pedestal structure: 
–  Gradient determined by local KBM 

stability 
–  Width grows until global PB stability 

threshold is reached (ELM) 
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EPED Model Suggests ELM Suppression Requires 
Enhanced Transport Localized at Pedestal Top  

•  EPED Model of pedestal structure: 
–  Gradient determined by local KBM 

stability 
–  Width grows until global PB stability 

threshold is reached (ELM) 

•  Implies model of ELM suppression: 
–  Something stops widening of pedestal 

before threshold 
–  Requires enhanced transport at Ψ≈96–97%  
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Stable! 
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EPED Model Suggests ELM Suppression Requires 
Enhanced Transport Localized at Pedestal Top  

•  EPED Model of pedestal structure: 
–  Gradient determined by local KBM 

stability 
–  Width grows until global PB stability 

threshold is reached (ELM) 

•  Implies model of ELM suppression: 
–  Something stops widening of pedestal 

before threshold 
–  Requires enhanced transport at Ψ≈96–97%  

•  Predictive modeling needs model of RMP effect on transport 
–  Enhanced classical transport?  (S. Smith, NI2.00005, earlier today) 

–  Change to KBM stability?  (C. Hegna, PP8.00058, right now) 

–  Stochasticity?  (D. Orlov, YI3.00006, Friday morning) 
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•  Island width is estimated using pitch-
resonant field at each mode-rational 
surface 

“Local Chirikov” Value Gives Indication of Localized 
Stochasticity 
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•  Island width is estimated using pitch-
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pair of adjacent surfaces 
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•  Island width is estimated using pitch-
resonant field at each mode-rational 
surface 

•  Chirikov value is defined for each 
pair of adjacent surfaces 

•  “Local Chirikov” value is defined by 
linear interpolation of these values 

“Local Chirikov” Value Gives Indication of Localized 
Stochasticity 
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•  Island width is estimated using pitch-
resonant field at each mode-rational 
surface 

•  Chirikov value is defined for each 
pair of adjacent surfaces 

•  “Local Chirikov” value is defined by 
linear interpolation of these values 

•  Plasma response reduces σ in the 
pedestal 

“Local Chirikov” Value Gives Indication of Localized 
Stochasticity 
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•  Island width is estimated using pitch-
resonant field at each mode-rational 
surface 

•  Chirikov value is defined for each 
pair of adjacent surfaces 

•  “Local Chirikov” value is defined by 
linear interpolation of these values 

•  σped = σ(Ψped) 

“Local Chirikov” Value Gives Indication of Localized 
Stochasticity 
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IOW and σped Metrics Are Tested on a Set of DIII-D 
Discharges 

•  Considered set of 13 discharges at 162 times with n=3 RMP 
applied 

•  IOW and σped evaluated for each time, with and without plasma 
response 
–  Plasma response is calculated with M3D-C1, using a linear two-fluid 

model (Spitzer resistivity, includes rotation) 
–  Calculations include n=3 response, not n=0 transport changes 

•  Correlation with ELM Suppression is 
quantified by fitting tanh to “ELM 
Intensity” as a function of the metric 
–  ELMing:   ELM Intensity = 1  
–  Suppressed:  ELM Intensity = 0 

NM Ferraro/APS-DPP/Nov. 2013 
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•  “Accuracy”: fraction of times correctly classified by the 
threshold from tanh fit 

 

σped Correlates Better Than IOW; 
Plasma Response Doesn’t Always Improve Correlation 

Metric Threshold Accuracy 

Vacuum IOW 12.7% 63% 

Plasma IOW 6.4% 70% 

Vacuum σped	

 1.55 89% 

Plasma σped	

 0.90 73% 

tanh 
“threshold” 
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•  Plasma response is sensitive to the equilibrium 

•  Plasma response conflates cause / effect of suppression 

•  Only the n=3 component is considered here 
–  Strong evidence that sidebands can be important (Orlov) 
–  Fenstermacher (2008) VIOW definition includes sidebands 

•  Linear response misses some important physics 
–  Amplification of islands implies nonlinear effects important 
–  IOW and σped are imperfect indicators of enhanced transport 

New Metrics are Better, But Still Imperfect 

NM Ferraro/APS-DPP/Nov. 2013 
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Suppression Correlation Metrics Have Been Applied To 
Several ITER Scenarios 

•  Metrics have been calculated for 
8 ITER scenarios, n=1–4 
–  15 MA QDT=10 Tped=3.8, 4.4, 5.0, 

and 6.3 keV 
–  12 MA Hybrid 
–  10 MA Ramp-Up 
–  9 MA 
–  7.5 MA 

•  IOW and σped calculated as a 
function of the phase of the upper 
and lower coil rows (relative to 
center row) 

NM Ferraro/APS-DPP/Nov. 2013 
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•  Thresholds for three of four metrics can be satisfied for all 
scenarios 
–  Plasma IOW cannot be satisfied for 2/8 scenarios 

•  Metrics tend to agree on optimal coil phases; generally find 
easier suppression at higher n 

Suppression Threshold of Three of Four Metrics Can Be 
Achieved for All ITER Scenarios 
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•  Applying new understanding of pedestal evolution and 
perturbed 3D equilibria yields improved ELM suppression 
metrics 
–  Local measure of stochasticity at pedestal top (σped) appears to 

correlate better than vacuum island overlap width 
–  Still imperfect (don’t recover q95 window) 

•  Three of four metrics can be satisfied for all ITER scenarios 
–  Encouraging, but not definitive 

•  For truly predictive models, better understanding of transport in 
3D geometry is needed 

 

Summary 

NM Ferraro/APS-DPP/Nov. 2013 
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ELM Suppression is a Top DIII-D Priority 
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Extra Slides 
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•  Reduced two-fluid nonlinear calculations show significant effect 
on pedestal from RMPs with just 11.25 kA in control coils 

•  RMP causes PB to mode to rapidly achieve “nonlinear” amplitude 

Nonlinear Response Calculations Show Effect on ELM 
Stability 

linear growth 
phase (n=7) 

RMP No RMP 

NM Ferraro/APS-DPP/Nov. 2013 
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•  “Accuracy” defined as fraction of cases that are correctly 
classified using the best-fit “threshold” 

Including Plasma Response Improves IOW Correlation 

“threshold” 

tanh fit 

accuracy = 63% accuracy = 70% 
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•  Best correlation is found when σ(Ψ) is evaluated at the 
pedestal top (σped, usually Ψ ≈ 96–97%) 

•  Including plasma response reduces correlation! 

Local Chirikov Parameter Correlates With Suppression 
Better than IOW 

accuracy = 89% accuracy = 73% 
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