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Resonant interaction with applied 3D fields

used for locked mode (LM) control in DIII-D

* |-coiland C-coiln=1 I-coils
arrays apply resonant
torques on magnetic island W o | K

 Two applications:

— Low frequency limit

e Optimize EF correction
currents in a single-
discharge

— High frequency limit
e Prevent mode locking for m/n=2/1 island C-coills
disruption avoidance
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n =1 EF detected by slow (0.67 Hz) magnetic

steering of LM phase

* Rotating neoclassical tearing
mode (NTM) slows and locks

e C-coils do partial EF correction

(EFC) o_

* |-coils apply slowly rotating
resonant magnetic perturbation
(RMP) 0

e EF deduced from observed LM

dynamics, in a single-discharge J
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n =1 EF detected by slow (0.67 Hz) magnetic

steering of LM phase

126623

. . . 30| Rotating NTM [G]
* Rotating neoclassical tearing - | Rotation (~q=2) [kHz]

mode (NTM) slows and locks S _
- -
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e C-coils do partial EF correction " C-coil EFC [KA]
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* |-coils apply slowly rotating  I-coil RMP [KA]
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LM dynamics understood through torque

balance model

e Island torque balance: T(I)+7T(C)+T(EF)+T,, = % = 0 for LM
Reslnon’r Non-resonant

 Resonant torques estimated from magnetic measurements of
island:

T=Af7x§mcdx

 Plasma response modifies poloidal spectrum of applied field,
estimated using IPEC code

 Can solve for EF, if other torques are calculated
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Measured LM dynamics in good agreement

with fit to resonant torque balance

Torque Balance 6623
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Measured LM dynamics in good agreement
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Measured LM dynamics in good agreement

with fit to resonant torque balance

Torque Balance 6623
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Torque balance model can include non-

resonant torque effects

 More complete model required in Ohmic discharges with EF
penetration LMs

— Non-resonant torque, T, ~| 0B | ?in electron diamagnetic drift
direction
152781
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Torque balance model can include non-

resonant torque effects
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Torque balance model can include non-

resonant torque effects

 More complete model required in Ohmic discharges with EF
penetration LMs

— Non-resonant torque, T, ~| 0B | ?in electron diamagnetic drift

direction

180 | 152781
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o drift direction
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LM phase well described by balance of resonant and non-
resonant torques

— EF can still be fit
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Independent coil sets modeled in torque

balance

Torque Balance 6623

* “Ignore” C-coil torque: = e,
10 <o
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* Nexi: intrinsic and/or residual EFs in various DIII-D discharges
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LM steering method for EF detection agrees

with other techniques

n=1 Correction Currents

e Forward calculation of EFC o — .
currents using physical geometry O LM Steering
of known intrinsic DIII-D EF % Forward

 Optimal correction minimizes
drive for least-stable kink

— See: TI2.00001, C. Paz-Soldan, 7
Thursday 2:30am
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LM steering method for EF detection agrees

with other techniques

n=1 Correction Currents

 Forward calculation of EFC 2 ' '
currents using physical geometry O LM Steering
of known intrinsic DIII-D EF A X Forward & Intrinsic EF
I"  RH plasma
S
e Optimal correction minimizes > \
drive for least-stable kink \g -
— See: T12.00001, C. Paz-Soldan, -1r LH plasmas -
Thursday 2:30am
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LM steering method for EF detection agrees

with other techniques

Dinn-D

Forward calculation of EFC
currents using physical geometry
of known intrinsic DIII-D EF

Optimal correction minimizes
drive for least-stable kink

— See: T12.00001, C. Paz-Soldan,
Thursday 2:30am

n=1 Correction Currents

I

O LM Steering

Forward
* * Intrinsic EF
i " RH plasma
I
Residual EF I
LH plasma '
(= B
Ji— - -
A - —
bL 4 \g
Intrinsic EF

LH plasmas |

Agreement over a variety of discharges with differing EFs
(due to coil current changes in EF sources)
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EF detection by LM steering may be

applicable to ITER

 EFC currents empirically determined in a single discharge

 Notrestricted to low density discharges

* Independent of high beta or rotation
— Early operation of ITER lacking full auxiliary power
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At higher frequencies (300 Hz, Qt,, = 6), resonant

interaction used to sustain mode rotation

Mode locking
 Without control: growing 2/1 NTM \ - s

locks, causing beta collapse and 4o - B Magn 'C;R“’be Jb[\j]
major disruption oh WJ'\T“ ,‘,
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At higher frequencies (300 Hz, Qt,, = 6), resonant

interaction used to sustain mode rotation
Mode locking Mode

\ Enfrainment
- -
. . . 153‘890,153967

 Without control: growing 2/1 NTM
locks, causing beta collapse and
major disruption

e Rotating n=1 I-coil field “entrains”
slowing island

e Entrainment up to 300 Hz
(Qt,, = 6) demonstrated

e Modest improvement in
confinement observed

Dinn-D
D. Shiraki/APS-DPP/Nov.

NATIONAL FUSION FACILITY

-40

400

200

2013

40 -

|-coil fréq [Hz] | | ﬁ

NO RMP -
With RMP

I o

V'V v'v‘
betaN | | \/\1

Plasma current [MA]

2000 3000
Time [ms]

4000



11

Modal analysis of magnetics arrays confirms

enfrainment and spin-up of 2/1 mode

 Magnetics arrays analyzed for Entrainment lost
modal shapes (eigspec code) (mode unidentified)

m/n =-2/-1 mode fracks

ope . l-coil frequenc
e Verifies entrainment of queney

m/n='2/'1 iSIGnd 0.4 ‘o' /

—_ N —

e Periods of entfrainment loss,
under study

o
o
@
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o

0 T R T
’ Similar ClpprOCICh invesﬁga’red 40 Bp Magnetic probes [G]
with feedback control of mode A1
H I
rotation l

— See: BP8.00112, M. Okabayashi 2200 2600 3000 3400 3800
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Summary: Resonant interaction with applied 3D

fields successfully used for LM control in DIlI-D

e Optimize EF correction currents in a single discharge

— Not restricted to low density, and independent of auxiliary
heating sources

 Prevent mode-locking for disruption avoidance
— Enfrainment up to 300 Hz (Qt,, = 6) demonstrated
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