#### **3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod**

### J.D. Lore<sup>1</sup>, M.L. Reinke<sup>2</sup>, B. LaBombard<sup>2</sup>, B. Lipschultz<sup>3</sup>, R. Pitts<sup>4</sup>

<sup>1</sup>Oak Ridge National Laboratory, Oak Ridge TN, USA <sup>2</sup>Plasma Science and Fusion Center, MIT, Cambridge MA, USA <sup>3</sup>University of York, York, UK <sup>4</sup>ITER Organization, St Paul Lez Durance, France





MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

# ITER requires partially detached divertor plasmas

- During inductive operation at Q=10, ITER must run with partially detached divertor plasmas
- A set of divertor gas valves will be used to maintain the radiated power fraction
  - Toroidally localized injection may lead to asymmetry in radiated power, detachment, heat flux
- Experiments were run on Alcator C-Mod to investigate potential asymmetry
  - Clear toroidal variation in radiated power, impurity line emission, divertor conditions measured with a single divertor puff
  - Experiments led to increasing the number of injection locations from 3 to 6 in ITER
- 3D modeling using the scrape-off-layer transport code EMC3-EIRENE is in progress to model these experiments
  - Goal: Validate model on C-Mod, then run predictive simulations for ITER



### Outline

- C-Mod experiments with divertor gas injection
- The EMC3-Eirene Code
- Experimental and simulated trends in divertor pressure, radiated power, and nitrogen line emission
- Predicted asymmetry in divertor heat flux due to a single gas injection location
- Summary

#### **C-Mod Experiments were Performed with Toroidally Localized Divertor Gas Injection**

- Set of 10 reproducible discharges: 1090814(006-016)
  - Ohmic L-Mode, I<sub>p</sub>=1MA, B<sub>t</sub>=5.4T, n<sub>e</sub>~1.1e20 m<sup>-3</sup>, q<sub>95</sub>~3.75
  - Divertor is in the high recycling regime
- N₂ injected into divertor at ~0.9s through a single valve each shot → gas location shifts relative to diagnostics
  - Gas location analogous to ITER conditions





55th APS-DPP, Denver, CO. Nov. 11-15, 2013

#### **Reproducible toroidal asymmetry is measured in edge and divertor diagnostics**

ΔΝV

0.8

Time (s)

NV Brightn

- Experiments are well diagnosed, with many divertor and SOL views to constrain and validate modeling
- Toroidal modulation measured in nitrogen line emission, P<sub>rad</sub>, and divertor electron pressure

90

180

KBOT-10

relative to puff (deg)

ΔNV

5

NV Brightness

⊲

-180

-90



# Experiments are modeled using the 3D EMC3-Eirene code

- The EMC3-Eirene code<sup>1</sup>
  - 3D fluid plasma model (EMC3) coupled to kinetic neutral transport and PSI (EIRENE)
  - Classical parallel transport with prescribed anomalous crossfield diffusivities
  - Trace fluid impurity model ( $T_a = T_i$ ,  $n_a Z_a << n_i$ ) with feedback to main plasma through electron energy loss
  - Outputs: 3D neutral and fluid plasma quantities, surface loads on to PFCs
  - No cross-field drifts or kinetic corrections
- Simulation of N puff experiments
  - High resolution, full toroidal grid with single N<sup>0</sup> puff in divertor
  - Inputs: P<sub>core</sub>=1.25MW, n<sub>core</sub>=1e20m<sup>-3</sup>, constant cross-field diffusivities, N<sup>0</sup> strength from puff calibration, R<sub>imp</sub>=0.5
  - PFR is largely transparent to  $N^0$ , ionization occurs near separatrix
  - Impurity radiation largest in flux tubes connecting to the divertor near the outer strike point



## Impurity puff results in net pressure drop with toroidal modulation

- Upstream pressure approximately matched with constant cross-field coefficients
  - Downstream pressure within ~2x, radially varying coefficients could be used to better match





## Impurity puff results in net pressure drop with toroidal modulation

- Upstream pressure approximately matched with constant cross-field coefficients
  - Downstream pressure within ~2x, radially varying coefficients could be used to better match
- Toroidally averaged divertor profiles:
  - Net (n=0) pressure drop in experiment and model





#### Impurity puff results in net pressure drop with toroidal modulation

- Upstream pressure approximately matched with constant cross-field coefficients
  - Downstream pressure within ~2x, radially varying coefficients could be used to better match
- Toroidally averaged divertor profiles:
  - Net (n=0) pressure drop in experiment and model
- Repeatable toroidal modulation in measured pressure near outer strike point





## Impurity puff results in net pressure drop with toroidal modulation

- Upstream pressure approximately matched with constant cross-field coefficients
  - Downstream pressure within ~2x, radially varying coefficients could be used to better match
- Toroidally averaged divertor profiles:
  - Net (n=0) pressure drop in experiment and model
- Repeatable toroidal modulation in measured pressure near outer strike point
  - n≈1 toroidal variation in pressure qualitatively captured by model





## Trends in N line emission captured near x-point, PFR may require cross-field drifts

- Clear toroidal asymmetry in NV emission in chords viewing near x-point
- Above x-point temperature gradient force pushes impurities upstream into view, results in inverted profile



## Trends in N line emission captured near x-point, PFR may require cross-field drifts

- Clear toroidal asymmetry in NV emission in chords viewing near x-point
- Above x-point temperature gradient force pushes impurities upstream into view, results in inverted profile
- View through x-point peaked at puff location, main ion friction dominates, pulls impurities out of view
- Toroidal behavior seems to be well described by parallel impurity forces in SOL near x-point



## Trends in N line emission captured near x-point, PFR may require cross-field drifts

- Clear toroidal asymmetry in NV emission in chords viewing near x-point
- Above x-point temperature gradient force pushes impurities upstream into view, results in inverted profile
- View through x-point peaked at puff location, main ion friction dominates, pulls impurities out of view
- Toroidal behavior seems to be well described by parallel impurity forces in SOL near x-point
- Below x-point: Friction dominates in model, results in in downstream peaking. Experiment peaked at puff loc.
  - Cross-field drifts may be required to capture impurity behavior in PFR, experiments have demonstrated importance [1,2]



#### **Toroidally asymmetry in target heat flux predicted near outer strike point**

- Impurity radiation results in net reduction in power carried by plasma to targets
  - $P_{\text{targ}}^{\text{plasma}}$  reduced from 930kW to 730kW (P<sub>in</sub>=1.25MW)
- Toroidal asymmetry in P<sub>rad</sub> results in toroidal asymmetry in heat flux near outer strike point
  - Toroidal extent will depend on machine size, divertor geometry



### Summary

- C-Mod experiments were performed to assess toroidal asymmetry caused by local divertor impurity injection for ITER
- The 3D edge transport code EMC3-Eirene has been applied to model these experiments
  - Validation will give confidence in predictive simulations for ITER
- Measured net reduction and toroidal variation in divertor pressure at OSP are qualitatively reproduced
- Modeled toroidal asymmetry in NV emission near x-point have similar trends as experiment, however cross-field drifts are likely required to match behavior in PFR
- Toroidal asymmetry in target heat flux is predicted with a single divertor injection location
- Ongoing work: Continue investigation of diagnostic data and model validation, quantify effect of multiple injection locations, determine scaling with machine size

#### **Extra slides**

### **EMC3-Eirene fluid equations**

 $\nabla \cdot (n_i V_{i\parallel} \boldsymbol{b} - D \nabla_{\perp} n_i) = S_p$   $\nabla \cdot (m_i n_i V_{i\parallel} V_{i\parallel} \boldsymbol{b} - \eta_{\parallel} \nabla_{\parallel} V_{i\parallel} - m_i V_{i\parallel} D \nabla_{\perp} n_i - \eta_{\perp} \nabla_{\perp} V_{i\parallel}) = -\nabla_{\parallel} p + S_m$   $\nabla \cdot (\frac{5}{2} n_e T_e V_{i\parallel} \boldsymbol{b} - \kappa_e \nabla_{\parallel} T_e - \frac{5}{2} T_e D \nabla_{\perp} n_e - \chi_e n_e \nabla_{\perp} T_e) = -k(T_e - T_i) + S_{ee} + S_{imp}$   $\nabla \cdot (\frac{5}{2} n_i T_i V_{i\parallel} \boldsymbol{b} - \kappa_i \nabla_{\parallel} T_i - \frac{5}{2} T_i D \nabla_{\perp} n_i - \chi_i n_i \nabla_{\perp} T_i) = +k(T_e - T_i) + S_{ei}$ 

Sources from plasma-neutral interactions provided by Eirene Trace impurity model



#### Feng, J. Nucl. Mater. (1999)

### **Impurity forces in EMC3**



- Dominant forces are friction and ion temperature gradient, and independent of Z
  - Divertor temperature is low, friction dominates in PFR
  - Non-recycling neutrals are trapped in PFR
- Experiments have shown evidence of drifts in SOL and PFR, not accounted for in this model



### **Impurity ionization in PFR**

- Gas injection is deep in divertor
- Plasma is nearly transparent to neutrals, ionization occurs near separatrix where T<sub>e</sub>>10eV



### **Comparison to ledge bolometers**

- Similar trends in LBOLO, large discrepancies in DBOLO
  - Strike point position is critical for DBOLO









