MHD Discussion

Clayton E. Myers

June 14, 2016

MHD activity - High-density compass scan

- Sawtoothing spectra trail off as the plasma gets close to locking
- Sawtoothing spectra change with density, still trail off

Rotation data - High-density compass scan

Shot 204654

MHD activity - Stacked NB1 shot

Rotation data - High-density compass scan

Shot 204202

Backup

XP-1506 Compass Scan - 1 Apr 2016

- XMP-1506: $n=1$ compass scan
- Goal is to determine optimum $n=1$ EFC as maximum 'distance' from locking
- Primary diagnostic = RWM sensors
- Apply density scaling of $\left(n_{\mathrm{e}} / n_{\mathrm{e}, \mathrm{avg}}\right)^{-0.98}$ as per Menard et al. [NF 2010]
- Results
- Well-resolved circle with amplitude of $I_{\text {RWM }} \sim 610 \mathrm{~A}$ and phase $\sim 15^{\circ}$
- Supports the 900 kA ohmic results
- Path forward
- Use these results as the 'standard' prescription for PF5-proportional EFC
- This new prescription was in use for Shots 204112 and 204118, which are the best NSTX-U H-modes to date

Compass scan shot compilation

Second compass scan at higher density - May 11

- XMP-1506: $n=1$ compass scan
- Conduct second compass scan at higher density ($\times 2.1$) to investigate locking threshold scaling
- No density normalization applied to data
- Results
- Well-resolved circle centered at the same $I_{\text {RWM }} \sim 600 \mathrm{~A}$ and $\phi \sim 15^{\circ}$ correction
- The locking threshold only increases by $\sim 10 \%$ in spite of much higher density ($\times 2.1$) and slightly higher rotation ($\times 1.2$)
- Path forward:
- This pre-programmed EFC is presently used in every NSTX-U discharge
- The small change in locking threshold warrants further investigation

Compass scan shot compilation

Summary and plans

- Two compass scans confirm an optimized $n=1$ correction
- RWM coil current amplitude ~ 600 kA
- RWM coil current phase $\sim 15^{\circ}$
- This correction presently used in all NSTX-U scenarios
- What is the error field source?
- The XP-1506 correction doesn't agree with PF5 coil shape measurements
- The required correction is several times too large and 90° out of phase
- Confirmed by preliminary IPEC modeling
- Need to continue the search for the error field source
- Path forward
- How does the correction scale with plasma current?
- Raise the plasma current in L-modes to say, 800 kA and 950 kA (if possible), to determine the I_{p} scaling of the required correction
- Implications of MHD activity
- MHD spectrograms indicate that we are locking the $1 / 1$ sawtoothing core rather than a $2 / 1$ mode at the $q=2$ surface
- CHERS, etc. indicate that the $q=2$ surface may be locked in all of these discharges

MHD activity - Low-density compass scan

- Sawtoothing spectra trail off as the plasma gets close to locking

MHD activity - High-density compass scan

- Sawtoothing spectra trail off as the plasma gets close to locking
- Sawtoothing spectra change with density, still trail off

MHD activity - High-torque XMP-151 shot

- Higher torque from 2B keeps the $q=2$ surface from locking
- Differential rotation between the core and $q=2$ clearly visible

MHD activity - Low-torque XMP-151 shot

- Without the high torque, get a straight lock of the $q=2$ surface

