

Aspect ratio dependence of tearing stability

Lucas Morton

3DSP Meeting 11/14/2016

Multi-device comparison can test aspect ratio dependences in modified Rutherford equation

Terms vary in different ways

FIG. 9. Evaluation of the MRE for DIII-D m/n = 2/1 case of #135861 from Fig. 3. Fitting at the marginal point with the D_R term neglected. The same fitting parameters are used for the saturated mode at the start of the NBI ramp at higher beta (except $w_{small} \propto \beta_0^{-1/2}$ assumed). And in red, the initially growing island width seeded by a fishbone (at similar beta to the start of the ramp) is noted.

The modified Rutherford equation (MRE) defines a model for neoclassical tearing mode evolution

 Adds geometric (curvature) and kinetic (bootstrap) effects to classical instability

Neoclassical tearing modes follow MRE: large island limit

- At large island width, $w \propto \beta / \Delta'$
 - Assuming \dot{w} 'small'
 - Curvature small in **DIII-D**

 $1.22^{-1} \tau_R dw$

r dt

W

MRE has bifurcation in solutions

• Two (non-zero) solutions over w for $\dot{w} = 0$ for large β – One repellor, one attractor 0.25 GROWTH metastable Graphic courtesy of margina R. La Haye $\frac{\tau_{R}}{r} \frac{dw}{dt}$ stable DECAY -0.25 Increasing β -0.50-0.0 0.5 1.0 1.5 2.0 w/w_{marg} • No (non-zero) solutions at low β - Solutions merge, disappear at 'marginal point'

Solutions to MRE can be represented graphically

D. L. Rayburn, PhD thesis, • Attractor: $\rightarrow | \leftarrow$ Princeton University 2011 - 'Stable' branch (from perspectiv equilibrium) **Normalized width** Vormalizeo growth rate • Repellor: $\leftarrow | \rightarrow$ - 'Unstable' branch -2 -3 3 0 Normalized $J_{hoot} \propto \beta$

Solutions to MRE can be represented graphically

Solutions to MRE can be represented graphically

- Simplify to stability boundary for qualitative picture
- Keep in mind: $\dot{w} \approx 0$ Large island limit: $w \sim \beta$ lormalized width Decay Small island Growth effects Marginal point Metastability Normalized $J_{hoot} \propto \beta$ margin

1. Ramp-up: w = 0

- 1. Ramp-up: w = 0
- 2. Onset: something 'kicks' mode over boundary

- 1. Ramp-up: w = 0
- 2. Onset: something 'kicks' mode over boundary
- 3. Growth: mode 'jumps' to upper branch

Normalized $J_{boot} \propto \beta$

- 1. Ramp-up: w = 0
- 2. Onset: something 'kicks' mode over boundary
- 3. Growth: mode 'jumps' to upper branch
- 4. Saturated state: $w \sim \beta$

- 1. Ramp-up: w = 0
- 2. Onset: something 'kicks' mode over boundary
- 3. Growth: mode 'jumps' to upper branch
- 4. Saturated state: $w \sim \beta$
- 5. Marginal point: *w* falls to zero Marginal point
 - Loss of 'equilibrium'

Hysteresis loop seen in DIII-D experiments

Evaluation of MRE using special points

- Maximum, saturated width
 - Relates bootstrap + curvature to Δ'
 - Neglect small-island-width terms
- Peak growth rate
 - Relates bootstrap/curvature to τ_r
 - Need to get τ_r correct
- Marginal point

- Address small-island-width terms

La Haye *et al*, PoP **19**, 062506 (2012)

■ 2/1 NSTX q₉₅~8

5 - △2/1 DIII-D q_{os}~4

 Terms vary in different ways – With ϵ , in addition to β

1.8

Dedicated DIII-D experiments can match NSTX-U tearing discharges already run

- Match shaping (except R/a), $q_{95} \approx 7$, $I_p \approx 0.9 \text{ MA}$
 - $-B_T \approx 1.44$ T (DIII-D) vs. 0.65 (NSTX-U) for q_{95} matching
- Get growth, saturation, marginal point
- Tearing stability is high priority topic in MSG
 - Exp's on DIII-D will provide complimentary data for NSTX-U

Aspect Ratio R/a = 1.4, 1.7, 2.7

'Leapfrog' NSTX-U MSG XP1544

- XP1544 approved but not run
 - "Make contact with NSTX for n=1 tearing stability"
- PPPL / GA collaboration on core stability

- Previously published study

R. J. La Haye, R. J. Buttery, S. P. Gerhardt, S. A. Sabbagh, D. P. Brennan, "Aspect ratio effects on neoclassical tearing modes from comparison between DIII-D and National Spherical Torus Experiment" PoP **19**, 062506 (2012)

	DIII-D	NSTX-U	NSTX
R/a	3.1	1.7	1.4
Growth rate	!!!	\checkmark	✓
Saturated size	!!!	1	1
Marginal point	!!!	×	1
		XP 1544	

DIII-D shot developed from target 135861

- Near q_{95} , I_p targets
- Improving shape matching
 - Increased inner gap at midplane
 - Increases elongation
 - -Adjusted B_T to match q_{95}

Tearing mode activity observed in NSTX-U initial operations

3DSP Meeting, Lucas Morton, 11/14/2016

Step 1: Toroidal mode number analysis

- Use cross-phase, amplitude to auto-calibrate coils
 - Assume signal is $B(t, \phi_j) = C_j(B_n e^{i\omega t})$ with $C_j = |C_j| e^{in\phi_j}$
 - Check that nominal \approx actual phase (correct n)
- Get best estimate of fluctuation:

$$-\hat{B}_n(t) = FFT^{-1}\left(\sum_j \frac{B(\omega,\phi_j)}{c_j}\right)$$

• Calculate 'coherence' spectrogram:

$$-\chi(t,\omega) = \frac{\left|\sum_{j} B(t,\omega,\phi_j)\right|}{\sum_{j} |B(t,\omega,\phi_j)|}$$

Step 2: Identify mode frequency, amplitude

• Fit Gaussian profile in frequency space for total power

Step 3: Find island width from amplitude

- Use TS (NSTX-U), CHERS (NSTX) as available
- Find width of flat spot
- Calibrate mode amplitude:

$$-w \propto \sqrt{\frac{\tilde{b}}{B_0}} \rightarrow w = C\sqrt{\tilde{b}}$$

Step 4: Normalized phase diagram

- Growth rate as a function of width
- Normalize to ion banana width, resistive time NSTX-U Shot 204112: growth and saturation

Early results from NSTX/NSTX-U comparison

• NSTX-U sees larger, faster-growing n = 1 mode

Initial comparison of NSTX(-U), DIII-D

- Trend to larger, faster islands with smaller ϵ
- DIII-D peak growth rate very large

Small aspect ratio \rightarrow small hysteresis

- Larger $\epsilon \rightarrow$
 - More bootstrap
 - Smaller 'small island' limit

Normalized $J_{boot} \propto \beta$

Dedicated DIII-D experiments for the national campaign can match NSTX-U tearing discharges already run

- Match shaping (except R/a), $q_{95} \approx 7$, $I_p \approx 0.9$ MA
 - $-B_T \approx 1.44$ T (DIII-D) vs. 0.65 (NSTX-U) for q_{95} matching
- Get growth, saturation, marginal point
- Tearing stability is high priority topic in MSG
 - Exp's on DIII-D will provide complimentary data for NSTX-U

Aspect Ratio R/a = 1.4, 1.7, 2.7

3DSP Meeting, Lucas Morton, 11/14/2016

NSTX-U

3DSP Meeting, Lucas Morton, 11/14/2016