

Progress in Resistive DCON Applications

Z.R. Wang¹

J.-K. Park¹, A. Glasser², D. Brennan³, Y.Q. Liu⁴, J. Menard¹

¹Princeton Plasma Physics Laboratory ²Fusion Theory & Computation, Inc. ³Princeton University ⁴Culham Centre for Fusion Energy

PPPL DIII-D MHD Coordination Meeting December 6, 2016

Resistive DCON Solves Reliable Outer Region Δ ' and Indicates Δ ' is Destabilized by Plasma Pressure

Resistive DCON reproduces Δ ' behavior in Furth, Rutherford and Selberg, Phys. Fluids 16, 1054(1973).

Resistive DCON solves Δ ' in full toroidal geometry with $q_{max} > 8$.

Finite β Effect on Outer Region Δ'

Higher $\beta \rightarrow \text{Increase } \Delta$ ' at q=2,3 \rightarrow More unstable tearing mode

Finite β Effect on Outer Region Δ' and Tearing Growth Rates ($q_a < 3$)

- n=1 tearing mode can be driven by plasma pressure.
- Δ' at q=2 surface is more positive while approaching no wall limit.

DCON vs. MARS Benchmark One Singular Surface

 τ = triangularity = 0 $q_0 = 1.1, q_a < 3$

 κ = elongation = 1 R/a = aspect ratio = 2 R/a = aspect ratio = 2 τ = triangularity = 0 $q_0 = 1.1, q_a < 3$

 κ = elongation = 1.3 $q_0 = 1.1, q_a < 3$

First resistive DCON paper has been published. Glasser, Wang and Park, Phys. Plasmas 23, 112506 (2016)

Resistive DCON and MARS-F Predict Unstable n=1 Tearing Mode as Observed in NSTX-U Experiments

- Unstable n=1 tearing mode is observed in L mode NSTX-U discharge (204718).
- Resistive DCON and MARS-F predict unstable n=1 tearing modes at q≥3 singular surfaces.
 Diagonal terms of Δ' matrix solved by DCON (outer

RDCON: Δ' Optimization of NSTX-U L-Mode Discharge to Stabilize n=1 Tearing Mode ($q_0 \downarrow$ and $\beta_N / l_i \uparrow \rightarrow \Delta' \downarrow$)

Resistive DCON is applied to optimize NSTX-U equilibrium to avoid tearing instability (varying equilibrium parameters to minimize Δ').

A sequence of equilibria are generated by scanning current and pressure profiles with CHEASE code, where plasma boundary of discharge 204718 is used.

Reduce q_0 and increase $\beta_N/l_i \rightarrow \text{Decrease } \Delta' \text{ at } q=2,3$

Outer Region Free Energy Decrease (More Positive Ideal Energy) $\rightarrow \Delta'$ Decrease

 Δ ' behavior directly relates to the ideal energy (Outer region energy).

More stable idea MHD stability corresponds to smaller Δ' .

Real-time ideal DCON may important to both ideal and resistive MHD instabilities.

Future Plan of Resistive DCON Development and Application

- Complete the benchmarking between Resistive DCON and MARS in NSTX-U and DIII-D experimental equilibria (D-shape equilibrium with multiple surfaces).
- Develop the neoclassical inner region model to study the linear NTM stability with resistive DCON.
- Perform a systematic optimization of NSTX-U equilibrium (both L/H modes) to minimize Δ' .
- Investigate the small island opening near the pedestal due to RMP fields with resistive DCON and MARS code.