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The effect of an anisotropic pressure of thermal or energetic particles on resistive wall mode (RWM) sta-
bility is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu, et al.,
Phys. Plasmas 12, 057301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma
equilibrium, and a complete treatment without a high frequency mode rotation assumption leads to kinetic
terms in addition to anisotropy corrections to the fluid terms. Using a perturbed bi-Maxwellian distribution
function for thermal particles, with a higher temperature perpendicular to the magnetic field than parallel, the
ballooning destabilization term is reduced while the stabilizing kinetic effects of the trapped thermal ions are
enhanced, leading to an increase in RWM stability. For energetic particles, the consequences of perpendicular
vs. parallel injection and broad vs. narrow spreading in pitch angle of beam ions with an anisotropic slowing-
down distribution in the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557
(2000)] are considered. The ballooning term is modified to be less destabilizing and together with the kinetic
effects, the overall effect of beam ions is to be significantly stabilizing, maximizing at more perpendicular
injection and narrow spreading. c⃝ 2012 American Institute of Physics. [DOI: 00.0000/0.0000000]

I. INTRODUCTION

Tokamak fusion plasmas generate energy most efficiently when the ratio of plasma stored energy to magnetic
confining field energy (characterized by the quantity βN ) is high. In order to reach these conditions without disruption
of the plasma current due to the growth of MHD kink-ballooning modes of instability, these modes must be stabilized.
The presence of a resistive wall around the plasma can slow the growth of these modes down to the time scale of
penetration of the magnetic perturbations through the wall, converting the mode into a resistive wall mode (RWM).
However, the RWM can also disrupt the plasma when βN is above the so-called no-wall limit unless it is itself stabilized
by passive or active means1.
It has long been recognized that anisotropy of the plasma pressure with respect to the direction of the magnetic field

can play a role in plasma stability. Consideration of anisotropy goes back as far as Refs. [2] and [3]; some more recent
prominent examples include Refs. [4] and [5]. One possible course of action is to consider the perturbed perpendicular
and parallel pressures from Chew-Goldberger-Low (CGL)6 theory. It will be demonstrated here, however, that using
CGL theory is akin to an assumption of a high frequency mode, which is not applicable to the RWM. Instead,
kinetic theory, in which the perturbed pressures are rigorously solved from a perturbed distribution function, will be
employed. Kinetic theory, recently expanded to be relevant to low frequency modes such as the RWM7, has been
successfully compared to experimental instability8–10 in the National Spherical Torus Experiment11 (NSTX) with
calculations from the MISK code12. In particular, the importance of resonances between the plasma rotation and the
motions of thermal particles was elucidated. Here we will expand the treatment of those thermal particles to include
the possibility of anisotropy, such as might arise when Maxwellian electrons are modified by electron cyclotron current
drive (ECCD) or electron cyclotron resonance heating (ECRH)13. It was then recognized that energetic particles,
such as beam ions, can also be important to RWM stability10,14–16. This effect has been studied experimentally, such
as a tilted neutral beam injection experiment in DIII-D ? , and theoretically, as in Ref. [15] which looked at the effect
of the deposition location in Ψ and of the beam injection energy. Radially localized anisotropy of ions will not be
considered here, but we note that much of the same physics applies, and is important for stabilization of sawteeth
(using heating from ICRF17,18 or NBI18,19).
In Sec. II we outline the Energy Principle approach to RWM stability calculations with a perturbative approach.

In order to use such an approach we must then demonstrate in Sec. III that anisotropy of the pressure represents a
small perturbation on the equilibrium. In Sec. IV an anisotropic perturbed pressure tensor is used to determine a
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FIG. 1. Example of a stability diagram, showing contours of γτw = 0 with δW∞ = −1 and δWb = 1 in arbitrary units, modified
by anisotropy. Positive δWA shifts the unstable region to the left, while negative δWA shifts it to the right.

general equation for the anisotropic corrections to the fluid δW term. Equations for the kinetic effects depend on
the distribution function of the particles chosen; in Sec. V these are derived for two specific cases: a bi-Maxwellian
distribution of thermal particles and an anisotropic slowing-down distribution for energetic particles. In Sec. VI
we return to the fluid anisotropic correction specifically for the pressure-driven ballooning destabilization term and
incorporate these two distribution functions as well. Calculations with the MISK code are carried out using these
derived expressions in Sec. VII for an analytical Solov’ev equilibrium to test the effect of thermal particle anisotropy,
and a real NSTX experimental equilibrium to test the effect of energetic particle anisotropy and its dependence on
injection pitch angle and width of the spreading in pitch angle. Further possible improvements to the energetic particle
treatment are discussed in Sec. VIII and finally conclusions are drawn.

II. STABILITY CALCULATION THROUGH AN ENERGY PRINCIPLE APPROACH

Pressure anisotropy leads to a modified Energy Principle expression for the complex mode frequency, ω, normalized
by the wall time constant τw, where ω = ωr+ iγ is comprised of the growth rate, γ, and real mode rotation frequency,
ωr:

−iωτw = −δW
∞
V + δWF + δWA + δWK

δW b
V + δWF + δWA + δWK

. (1)

Here δW∞
V and δW b

V are the usual changes in vacuum potential energy without a wall and with an ideal wall,
respectively. δWF is the usual isotropic fluid term, while δWA is an anisotropic fluid correction and δWK is the
kinetic term, which also must be modified by anisotropy. In Ref. [8] stability diagrams were described, which show
contours of constant normalized growth rate on plots of Im(δWK) vs. Re(δWK). Now the anisotropy term modifies
those diagrams by adding −δWA to the offset a of the γτw = 0 curve that defines the unstable region, as shown in
the example in Fig. 1.
Now, in order to solve for the δW terms, we use a plasma force balance ρ(dv/dt) = j×B−∇ · P, which leads to

an expression for the change in potential energy of the plasma due to a small displacement ξ⊥:

δW =
1

2

∫
ξ∗⊥ ·

[
j0 × B̃+ j̃×B0 −∇ · P̃

]
dV, (2)

where x0 are equilibrium quantities, x̃ are perturbed quantities, j is the plasma current, B is the magnetic field, ρ is
the density, v is the velocity, P is the pressure tensor, and V is the plasma volume. In the perturbative approach to
stability calculations, it is assumed that the RWM eigenfunction, ξ⊥, is unchanged by both the kinetic effects that
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come in through P̃ and, now, the anisotropy of the equilibrium as well. This is as opposed to the alternative approach
in which P̃, ξ⊥, and ω are self-consistently calculated.
The well known problem of closure of the set of equations now requires us to make specification for the equilibrium

and perturbed pressures. First, however, we will examine the effect of anisotropy on the plasma equilibrium to assure
the applicability of the perturbative approach to the problem.

III. EQUILIBRIUM

Anisotropy of the plasma pressure can affect the plasma equilibrium20–26. In the present work, however, we will use
the isotropic equilibrium as a basis for stability calculations. Therefore we must now demonstrate that the anisotropy
can be considered to be a small perturbation on the isotropic equilibrium that can be neglected.
The plasma equilibrium relation comes from the force balance of Sec. II with the plasma velocity considered constant,

so that j × B = ∇ · P. We will consider a pressure tensor with separate components in the directions parallel and
perpendicular to the magnetic field,

P = p∥b̂b̂+ p⊥

(
Î− b̂b̂

)
, (3)

where Î is the identity tensor and b̂ = B/B.
Let us now also define an anisotropy parameter5,24,27,28

σ = 1 +
µ0

(
p⊥ − p∥

)
B2

, (4)

which we note is unity when p⊥ = p∥. It is easy to see that for a given normalized pressure difference (p⊥ − p∥)/p,
|σ − 1| is larger for higher beta plasmas.
Then using Ampere’s law and the anisotropic pressure tensor from Eq. 3, we have:

1

µ0
(∇×B)×B = ∇ ·

(
p∥b̂b̂+ p⊥

(
Î− b̂b̂

))
. (5)

Now using the magnetic curvature, κ = b̂ ·∇b̂, and

∇ ·
(
b̂b̂
)
=b̂∇∥ + κ+ b̂

(
∇ · b̂

)
, (6)

∇ ·
(
Î− b̂b̂

)
=∇⊥ − κ− b̂

(
∇ · b̂

)
, (7)

we have

−∇ B2

2µ0
+
(
κ+ b̂

(
∇ · b̂

)) B2

µ0
= ∇⊥p⊥ + b̂∇∥p∥ +

(
κ+ b̂

(
∇ · b̂

)) (
p∥ − p⊥

)
. (8)

In the perpendicular direction, the equilibrium is5

∇⊥

(
B2

2µ0
+
p∥ + p⊥

2σ

)
= κ

B2

µ0
, (9)

In the isotropic case, the equilibrium relation reduces to ∇⊥

(
B2

2µ0
+ p
)
= κB2

µ0
. The equilibrium relation in the

anisotropic equilibrium pressure case can be written in this same form, if we define a new quantity which is like a
corrected magnetic field D = B

√
σ, so that,

∇⊥

(
D2

2µ0
+ pavg

)
= κ

D2

µ0
, (10)

where we have defined pavg = (p∥ + p⊥)/2. This is useful because it means that the plasma equilibrium can be
considered to first order the isotropic equilibrium, and then having an anisotropic correction of the second order. As
long as σ is not much different from unity, we will consider the perturbative approach to the problem to be valid.
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IV. THE ANISOTROPIC PERTURBED PRESSURE TENSOR

One must now be careful in linearizing Eq. 3 for obtaining P̃ for use in Eq. 2, remembering that b̂ can also be
perturbed5. Therefore,

P̃ = p̃∥b̂b̂+ p̃⊥

(
Î− b̂b̂

)
+ (p∥ − p⊥)B

−2
(
B̃B+BB̃

)
. (11)

At this point the problem naturally separates into fluid and kinetic approaches. In the fluid approach the perturbed
pressures are given in terms of macroscopic quantities. There are two common fluid approximations. The first is to
assume the equilibrium pressure and the perturbed pressure are isotropic so, ∇ · P̃ = ∇p̃, which results in a fluid
compressibility term, 1

2

∫
γp|∇ · ξ⊥|2dV. Then the adiabatic equation is used to find p̃. In the second common fluid

approach, two adiabatic equations are used to find the two Chew-Golberger-Low (CGL)6 perturbed pressures, p̃⊥ and
p̃∥. This method is outlined in appendix B, and could result in the calculation of a δWCGL term29,30.

In the kinetic approach5,31–34, p̃⊥ and p̃∥ are defined by using the perturbed distribution function f̃ . First, we
write:

P̃ =
∑
j

mj

∫
vv

(
f̃j +

∂fj
∂B

ξ⊥ ·∇B+
∂fj
∂Φ

ξ⊥ ·∇Φ

)
d3v, (12)

and then use for f̃j :

f̃j =− ξ⊥ ·∇fj + Zje
∂fj
∂ε

Φ̃+ imj

(
ω
∂fj
∂ε

− n
∂fj
∂Pϕ

)
(v · ξ⊥ − s̃j)−

mj

B

∂fj
∂µ

(
−iωξ⊥ · v⊥ +

µ

mj
B̃∥ +

v∥

B
v⊥ · B̃

)
.

(13)

Here Φ is the potential, Pϕ is the toroidal canonical momentum, n is the toroidal mode number, and µ is the magnetic
moment. The quantitiy s̃j represents the integral along the unperturbed orbits and is essentially the term that gives
rise to kinetic effects in the problem (see for example Ref.[30]).

Generally it is assumed that the equilibrium pressure is isotropic (p∥ = p⊥), even in the kinetic approach. Here
we extend that approach so that in Eq. 11 the final term (perturbation of the direction of the magnetic field in an
anisotropic equilibrium pressure plasma5) is not zero, and ∂fj/∂B is also not zero in Eq. 12. Rather, one can show

that23,25 p∥ − p⊥ = B(∂p∥/∂B). After carrying through much algebra, and defining Z̃ = Zje
(
Φ̃+ ξ⊥ ·∇Φ0

)
, we

arrive at the expression

P̃ =b̂b̂

−ξ⊥ ·∇p∥ − (∇ · ξ⊥ + κ · ξ⊥)B
∂p∥

∂B
+
∑
j

mj

∫
v2∥

[
imj

(
ω
∂fj
∂ε

− n
∂fj
∂Pϕ

)
s̃j + Z̃ ∂fj

∂ε

]
d3v

 (14)

+
(
Î− b̂b̂

)−ξ⊥ ·∇p⊥ − (∇ · ξ⊥ + κ · ξ⊥)B
∂p⊥
∂B

+
∑
j

mj

∫
1

2
v2⊥

[
imj

(
ω
∂fj
∂ε

− n
∂fj
∂Pϕ

)
s̃j + Z̃ ∂fj

∂ε

]
d3v


+

1

B

(
b̂B̃⊥ + B̃⊥b̂

) (
p∥ − p⊥

)
. (15)

Finally, this represents a form of the perturbed pressure tensor that we can use to evaluate δW , from Eq. 2.

It is useful when doing so to separate out the various modes of instability, for example Eq. (39) in Ref. [35], or
Eq. (58) in Ref. [5]. Then the various terms of the potential energy can be seen to be contributions from stabilizing
shear Alfvén waves, fast magneto-acoustic (compressional Alfvén) waves, and the two terms that can drive instability

by current driven kink or pressure driven ballooning modes. Finally, using an alternative form for j0 × B̃ + j̃ ×B0,
ξ∗⊥ ·∇ · b̂b̂ = κ ·ξ∗⊥, and ξ∗⊥ ·∇ · (̂I− b̂b̂) = −(∇ ·ξ∗⊥+κ ·ξ∗⊥) from Eqs. 6 and 7, a fair bit of algebraic manipulation,
and splitting δW into isotropic fluid, anisotropic fluid, and kinetic plus electrostatic parts, we have
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δWF =
1

2

∫ { (
−|B̃⊥|2

µ0
− B2

µ0
|∇ · ξ⊥ + 2ξ⊥ · κ|2 + j∥

(
ξ∗⊥ × b̂

)
· B̃⊥

)
+ 2

(
κ · ξ∗⊥

)
(ξ⊥ ·∇pavg)

}
dV,

(16)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
shearAlfvén fast magneto-acoustic kink ballooning︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

δWA =
1

2

∫ {
(σ − 1)

(
−|B̃⊥|2

µ0
− B2

µ0
|∇ · ξ⊥ + 2ξ⊥ · κ|2 + j∥

(
ξ∗⊥ × b̂

)
· B̃⊥

)
− 2B |∇ · ξ⊥ + κ · ξ⊥|2 ∂pavg

∂B

}
dV,

(17)

and

δWK+Φ =
1

2

∑
j

∫ ∫
1

2
mjv

2

(
v2⊥
v2

∇ · ξ∗⊥ +

(
v2⊥
v2

− 2
v2∥

v2

)
κ · ξ∗⊥

)[
imj

(
ω
∂fj
∂ε

− n
∂fj
∂Pϕ

)
s̃j + Z̃ ∂fj

∂ε

]
d3vdV. (18)

Similar results have been previously derived in, for example, Refs. [4, 36–38]. One can easily see that if the equilibrium
pressure is isotropic, δWA is zero.
The above equation for δWF is solved by various numerical codes (with pavg = p, a flux function). For example,

the PEST code39 solves for δWF , in the form of Eq. (17) of Ref. [40], and uses the VACUUM code41 to solve for δWV . In
the following we will consider pavg ≈ p in Eq. 16 so that δWF can be considered unchanged from the isotropic case.
The correction due to anisotropy will come entirely from the δWA term. Note that the σ − 1 correction to the shear
Alfvén, magnetic compression, and kink destabilization terms will necessarily be small due to the restriction of σ ≪ 1
imposed by equilibrium considerations in Sec. III.
The last term of Eq. 17 represents a modification of the pressure-driven ballooning destabilization term, which we

will call δWA2. This term has a different anisotropy correction than the others because of its explicit dependence on
the pressure. It will be separately, and rigorously, calculated and discussed further in Sec. VI.
The fluid terms (δWF + δWA) should be self-adjoint and therefore strictly real42. In particular, δWA2 in Eq. 17 is

obviously self-adjoint, as are the first two terms (the shear Alfvén and the magnetic compression terms) of δWA in
Eq. 17 and δWF in Eq. 16. When the equilibrium pressure is isotropic (σ = 1 and pavg = p), one can show that the
last two terms of δWF (the kink and ballooning destabilization terms) are as well. With anisotropy that property is
no longer obvious, but a lengthly manipulation can be used to show that indeed δWF + δWA is still self-adjoint (see
appendix C).
Finally, δWK+Φ represents the kinetic plus electrostatic terms. In the following, we will drop the electrostatic

contribution and only consider the kinetic term, with the distribution function fj being for anisotropic particles.

V. KINETIC EFFECTS WITH ANISOTROPIC PRESSURE

An expression for δWK that shows explicitly the dependence on the distribution function of the particles considered
can be derived from Eq. 18 (ignoring electrostatic effects) and written10,15:

δWK =
∑
j

∞∑
l=−∞

2
√
2π2

∫ ∫ ∫ [
|⟨HTj⟩|2 λj,l

fj
Tj

]
τ̂

m
3
2
j B

|χ|ε 1
2 dεdχdΨ. (19)

Here j denotes the particle type that is being considered (ions or electrons), ε is energy, χ = v∥/v is the pitch angle,
Ψ is the magnetic flux, H and τ̂ are given by Eqs. (12) and (13) of Ref. [43], and we have defined the frequency
resonance fraction, λj,l, as:

λj,l =

Tj

fj

(
(ω − nωE)

∂fj
∂ε − n

Zje
∂fj
∂Ψ

)
n⟨ωj

D⟩+ (l + αnq)ωj
b − iνjeff + nωE − ω

. (20)
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Here ωE is the E × B frequency, ⟨ωD⟩ is the bounce-averaged precession drift frequency, l is the bounce harmonic,
α = 0 for trapped particles or α = 1 for circulating particles, ωb is the bounce frequency, and νeff is the effective
collision frequency. Note that Tj is a dummy variable that cancels out in the end.
Clearly the kinetic effects depend on the particle distribution function through its derivatives with respect to Ψ and

energy10,15. We will see in the next section that the derivative ∂fj/∂χ enters into the fluid anisotropy term as well.

A. Thermal Particles: bi-Maxwellian Distribution

In order to be consistent with the assumption of different pressures in the parallel and perpendicular directions,
one should use a bi-Maxwellian distribution, which has pressure anisotropy due to different temperatures parallel and
perpendicular to the magnetic field, in δWK . The Maxwellian distribution is really just a special case of the more
general bi-Maxwellian, with Tj∥ = Tj⊥, so the bi-Maxwellian form can be used in general.

f bMj (ε,Ψ, χ) = nj

(mj

2π

) 3
2 1

Tj⊥T
1
2

j∥

e−εχ2/Tj∥e−ε(1−χ2)/Tj⊥ . (21)

Here j denotes the particle type that is being considered (ions or electrons) and bM indicates bi-Maxwellian, ε is
energy, χ = v∥/v is the pitch angle, and Ψ is the magnetic flux. The density, nj(Ψ), and the two temperatures, Tj∥(Ψ)
and Tj⊥(Ψ), are each assumed to be flux functions, so that the two pressures p∥ and p⊥ are as well. The pressures are

given by p∥ =
∑

j

∫
mjv

2
∥fjd

3v =
∑

j njTj∥ and p⊥ =
∑

j

∫
1
2mjv

2
⊥fjd

3v =
∑

j njTj⊥. One can, of course, recover

the Maxwellian, isotropic solution when Tj∥ = Tj⊥.
We can see from Eq. 21 that

∂f bMj
∂ε

= −
f bMj
Tj

(
Tj
Tj∥

)
, (22)

and ∂fj/∂Ψ takes the form:

∂f bMj
∂Ψ

= −
f bMj
Tj

(
−Tj
nj

dnj

dΨ
−

(
εχ2 Tj

T 2
j∥

− 1

2

Tj
Tj∥

)
dTj∥

dΨ
−

(
ε(1− χ2)

Tj
T 2
j⊥

− Tj
Tj⊥

)
dTj⊥
dΨ

)
, (23)

Defining ωj
∗T∥

= −(1/Zje)(dTj∥/dΨ), and ωj
∗T⊥

= −(1/Zje)(dTj⊥/dΨ), then from Eqs. 19 and 20 we find:

δW bM
K =

∑
j

∞∑
l=−∞

√
π

∫ ∫ ∫
nj

 1

Tj⊥T
1
2

j∥

 τ̂

B
|χ|ε 5

2 e−εχ2/Tj∥e−ε(1−χ)2/Tj⊥dεdχdΨ

|⟨HTj/ε⟩|2 n
(

1
nj

dnj

dΨ +
(
εχ2 1

Tj∥
− 1

2

)(
1

Tj∥

)
ωj
∗T∥

+
(
ε(1− χ2) 1

Tj⊥
− 1
)(

1
Tj⊥

)
ωj
∗T⊥

+
(

1
Tj∥

)
ωE

)
−
(

1
Tj∥

)
ω

n⟨ωj
D⟩+ lωj

b − iνjeff + nωE − ω

 .
(24)

One can see that when Tj∥ = Tj⊥ = Tj , this equation reduces to the usual form for Maxwellian particles, since the

exponential terms together become e−ε/Tj , and the ω∗T terms become (ε/Tj − 3
2 )ω∗T .

Additionally one could, if desired, derive an expression for the kinetic term under the CGL perturbed pressure
assumptions by taking the limit of ω → ∞, although this is no longer applicable to the RWM. One can show that
under this high frequency limit, the CGL perturbed pressures are recovered (see appendix B).

B. Energetic Particles: Anisotropic Slowing-down Distribution

Energetic particles can also cause anisotropy of the equilibrium pressure and can be quite important for stability
problems10,14–16,44–48. The kinetic effects on RWM stability of anisotropic energetic particles was previously considered
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in Ref. [10], albeit for a simple example of a slowing-down distribution, and for trapped particles only. Here we extend
that analysis to include circulating particles, and to use a more realistic description of the distribution for beam ions.
For beam ions, a representative distribution is a slowing-down distribution function10,49 with a Gaussian distribution
of particles in χ,50 so that

f bj (ε,Ψ, χ) = njAb

(
mj

εb

) 3
2 1

ε̂
3
2 + ε̂

3
2
c

1

δχ

(
exp

[
− (χ− χ0)

2

δχ2

]
+ exp

[
− (χ+ 2 + χ0)

2

δχ2

]
+ exp

[
− (χ− 2 + χ0)

2

δχ2

])
.

(25)

Here ε̂ = ε/εb, where εb is the beam injection energy. Note that the subscript j could potentially refer to ions,
electrons, or alpha particles, but in the present work we will only consider ions; indeed the superscript b on f bj refers
to “beam” ions. The additional two exponential terms are included here in order to satisfy the boundary conditions
of no diffusive flux50 at χ = −1 or 1. Here, however, we do not require any conditions on the trapped/circulating
boundaries, or symmetry about χ = 0.
The critical energy between slowing down on electrons (ε > εc) vs. slowing down on ions (ε < εc) is

51,52:

εc =

(
3
√
π

4

) 2
3
(
mj

me

)(
me

ne

∑
i

(
niZ

2
i

mi

)) 2
3

Te. (26)

Note that in a deuterium plasma with ni = ne, εc/Te = 18.65(mj/mi) so that for alpha particles ε̂c ≈ 0.01 Te [keV].
For alpha particles, then, ε̂c ≪ 1 for plasmas with Te ≪ 100 keV, so ε̂c = εc/εb is quite small in Eq. 25 compared
to the range of 0 ≤ ε̂ ≤ 1. For deuterium beam ions ε̂c ≈ 0.2 Te [keV], so ε̂c and ε̂ are comparable for plasmas with
Te ≈ 1− 10 keV.
The form of f bj above is dependent upon a central pitch angle χ0(Ψ), and width δχ(ε,Ψ). The center of the Gaussian

is determined geometrically, by the intersection of the beam line with the magnetic field lines of the particular surfaces,
and is therefore, ostensibly, a known quantity. Note that for the general case of non-perpendicular injection, χ0 ̸= 0
and the distribution is not symmetric and therefore the recasting of the formulation of the problem in terms of χ
rather than Λ in Ref. [10], Sec. III was indeed necessary.
The spread of the Gaussian depends on the energy of the particles, because the broadening is determined by

Coulomb scattering50. The form of the Gaussian width is given by50,53,54:

δχ(ε̂,Ψ) =

√√√√δχ2
0(Ψ)− 1

3
ln
[
1 + ε̂

3
2
c (Ψ)

]
− 1

3
ln

[
ε̂

3
2

ε̂
3
2 + ε̂

3
2
c (Ψ)

]
. (27)

Here it is implicitly assumed that the energetic particles have the same mass as the thermal ions they are slowing
down on (I think). A similar form for δχ is given in Ref. [55].
If we now solve for Ab in terms of the other quantities, then the unknowns that must be specified to fully describe

the energetic particle distribution function are χ0(Ψ), δχ0(Ψ), nj(Ψ), and εb. Ab can be found by using nj =
∫
f bj d

3v,
which assures that the energetic particle density profile remains constant regardless of the choice of χ0 and δχ0,
resulting in

Ab(Ψ) =

[
4
√
2π

∫ 1

0

ε̂
1
2

ε̂
3
2 + ε̂

3
2
c

√
π

4

[
erf

(
χ0 + 3

δχ

)
− erf

(
χ0 − 3

δχ

)]
dε̂

]−1

. (28)

Here we note the difference between the above expression and the equivalent one in Ref. [49] because of the energy
dependence of δχ (and similarly for the factor that arises when solving for pj from f bj ).
Now that the distribution function is defined, we can use ∂fj/∂ε and ∂fj/∂Ψ in Eq. 20. Using

dδχ

dε̂
= −1

4

1

δχ

1

ε̂

(
ε̂

3
2
c

ε̂
3
2 + ε̂

3
2
c

)
, (29)

we have
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∂f bj
∂ε

=f bj
1

εb

[
−3

2

ε̂
1
2

ε̂
3
2 + ε̂

3
2
c

+
1

4

1

δχ2

1

ε̂

(
ε̂

3
2
c

ε̂
3
2 + ε̂

3
2
c

)
(
1− 2

δχ2

(χ− χ0)
2e−(χ−χ0)

2/δχ2

+ (χ+ 2 + χ0)
2e−(χ+2+χ0)

2/δχ2

+ (χ− 2 + χ0)
2e−(χ−2+χ0)

2/δχ2

e−(χ−χ0)2/δχ2 + e−(χ+2+χ0)2/δχ2 + e−(χ−2+χ0)2/δχ2

)]
. (30)

Note that when dδχ/dε̂ = 0, as was previously used in Ref. [10], this expression is considerably simpler.
Similarly, due to the additional dependence of χ0 and δχ0 on Ψ (and of ε̂c on Ψ in the δχ term), ∂fj/∂Ψ is given

by the complex expression:

∂f bj
∂Ψ

=f bj

[
1

nj

dnj

dΨ
+

1

Ab

dAb

dΨ
− 1

ε̂
3
2 + ε̂

3
2
c

dε̂
3
2
c

dΨ
+

1

e−(χ−χ0)2/δχ2 + e−(χ+2+χ0)2/δχ2 + e−(χ−2+χ0)2/δχ2

1

δχ2(
e−(χ−χ0)

2/δχ2

((
2 (χ− χ0)

2

δχ2
− 1

)
∂δχ

∂Ψ
+ 2 (χ− χ0)

dχ0

dΨ

)
+

e−(χ+2+χ0)
2/δχ2

((
2 (χ+ 2 + χ0)

2

δχ2
− 1

)
∂δχ

∂Ψ
− 2 (χ+ 2 + χ0)

dχ0

dΨ

)
+

e−(χ−2+χ0)
2/δχ2

((
2 (χ− 2 + χ0)

2

δχ2
− 1

)
∂δχ

∂Ψ
− 2 (χ− 2 + χ0)

dχ0

dΨ

))]
, (31)

where

∂δχ

∂Ψ
=

1

δχ

[
δχ0

dδχ0

dΨ
+

1

6

dε̂
3
2
c

dΨ

(
1

ε̂
3
2 + ε̂

3
2
c

− 1

1 + ε̂
3
2
c

)]
. (32)

Note that when dχ0/dΨ = 0 and dδχ/dΨ = 0, the above equation reduces to only the first three terms, which is what
was previously used in Ref. [10].
The expression for δW b

K then results from substituting ∂f bj /∂ε and ∂f bj /∂Ψ into Eq. 20. Of course one can easily
recover the isotropic result from Ref. [10] if χ0 = 0 and δχ0 → ∞. This is useful, for example, if one wishes to use
this anisotropic form generally, but revert to the isotropic form in certain cases, such as for alpha particles.

VI. ANISOTROPIC MODIFICATION OF THE PRESSURE-DRIVEN BALLOONING DESTABILIZATION TERM

Let us return specifically to the final term in Eq. 17 which is like an anisotropic modification to the pressure-driven
ballooning destabilization term. Though this is a fluid term, and is strictly real, it can be evaluated in a similar way
to the above method for δWK .

δWA2 =
1

2

∫
µ
∂

∂µ

∫ (
mjv

2
∥ +

1

2
mjv

2
⊥

)
fjd

3v|∇ · ξ⊥ + κ · ξ⊥|2dV (33)

=
√
2π2

∫ ∫ ∫
1

m
3
2
j

|∇ · ξ⊥ + κ · ξ⊥|2
(
χ4 − 1

) ∂fj
∂χ

τ̂

B
ε

3
2 dεdχdΨ. (34)

For isotropic particles this term is zero because ∂fj/∂χ = 0.

A. Thermal Particles: bi-Maxwellian Distribution

In the bi-Maxwellian case ∂fj/∂χ ̸= 0, but rather,
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∂f bMj
∂χ

=− f bMj (2ε|χ|)
(

1

Tj∥
− 1

Tj⊥

)
, (35)

so

δW bM
A2 = −

√
π

∫ ∫ ∫
nj

1

Tj⊥T
1
2

j∥

(
1

Tj∥
− 1

Tj⊥

)
|∇ · ξ⊥ + κ · ξ⊥|2

(
χ4 − 1

)
|χ|e−εχ2/Tj∥e−ε(1−χ2)/Tj⊥ε

5
2 dεdχdΨ.

(36)

The δWA2 term does not involve a frequency resonance fraction with various energy dependent terms in the same
way that δWK does. Therefore we can simply perform the energy integration, using56:

∫∞
0
x

5
2 e−axdx = (15/8)

√
πa−

7
2 ,

for a > 0. Then we have:

δW bM
A2 =

15π

8

∫ ∫
nj

1− Tj∥
Tj⊥

Tj⊥T
3
2

j∥

|∇ · ξ⊥ + κ · ξ⊥|2
(
1− χ4

)
|χ|
[
χ2

Tj∥
+

1− χ2

Tj⊥

]− 7
2

dχdΨ. (37)

Another consequence of the lack of a frequency resonance fraction is that, unlike the kinetic term, the anisotropy
term makes no distinction between ions and electrons (as long as ni ≈ ne and Ti ≈ Te). Finally, since |χ| ≤ 1, δW bM

A2
is positive (and therefore stabilizing), when Tj∥/Tj⊥ < 1 and negative (destabilizing) when Tj∥/Tj⊥ > 1.

B. Energetic Particles: Anisotropic Slowing-down Distribution

For the anisotropic slowing-down case, ∂fj/∂χ ̸= 0 as well, but rather:

∂f bj
∂χ

=f bj

(
− 2

δχ2

)[
(χ− χ0) e

−(χ−χ0)
2/δχ2

+ (χ+ 2 + χ0) e
−(χ+2+χ0)

2/δχ2

+ (χ− 2 + χ0) e
−(χ−2+χ0)

2/δχ2

e−(χ−χ0)
2/δχ2 + e−(χ+2+χ0)

2/δχ2 + e−(χ−2+χ0)
2/δχ2

]
. (38)

The expression for δW b
A2 then results from substituting ∂f bj /∂χ into Eq. 34.

VII. Calculations Using the MISK Code

The fluid, anisotropy, and kinetic δW terms will be calculated numerically for an NSTX equilibrium in four steps.
First, δWF is what is normally calculated by the PEST code (as long as we assume that pavg = p). Second, the
σ− 1 terms of δWA can be calculated through a modification of PEST which separates out the various stabilizing and
destabilizing terms, and multiplies the three relevant terms by µ0(p⊥ − p∥)/B

2 inside the volume integral of Eq. 17.
The integration of this quantity is performed by summation over surfaces and poloidal harmonics on each surface.
Finally, in steps three and four, the MISK code is used to calculate δWK and δWA2 according to the methods

outlined in Secs. V and VI. MISK has been used previously for various machines to calculate kinetic effects on stability
of Maxwellian thermal particles8–10,12,43,57–60 as well as for isotropic or simple anisotropic distributions of trapped
energetic particles10,57–60. Here it is expanded to include the anisotropic bi-Maxwellian distribution for thermal
particles, the σ − 1 fluid corrections, the δWA2 correction to the pressure-driven ballooning destabilization term,
circulating energetic particles, and an expansion of the anisotropic slowing-down distribution to allow for χ0(Ψ) and
δχ(Ψ, ε), in general.
Again it should be noted that the equilibria used in these calculations are themselves purely isotropic. As outlined

in Sec. III this approach is valid as long as the anisotropy is considered to be a small perturbation.

A. The Effect of Thermal Particle Pressure Anisotropy - Solov’ev Analytical Equilibrium

For the present study we wish to determine the effect of changing T∥/T⊥ of thermal particles on RWM stability
generally. In principle this could be a Ψ dependent quantity, but for simplicity we will use constant ratios across
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FIG. 2. (Color online) a) (δWF + δW bM
A )/δWF vs. scaled T∥/T⊥ for the Solov’ev equilibrium. Modification of the pressure-

driven ballooning term has a dominant effect. b) is a zoom-in of frame a) showing how the kink, fast magneto-acoustic, and
shear Alfvén δWA/δWF terms scale very similarly to σ0 − 1.

the entire radial profile. This is an artificial situation, not based on an experimental reality, but it will give insight
into the general effect of thermal particle anisotropy. To that end, in this section we will use an analytical Solov’ev
equilibrium solution to the Grad-Shafranov equation61,62 and scan T∥/T⊥ while keeping the total pressure constant.
We will use an equilibrium that was also used in Ref. [63]. This equilibrium is shaped, and contains the q = 2 and 3
rational surfaces within the plasma, and has a qedge = 3.263. It is specified by the parameters κ = 1.6, q0 = 1.9, and
ϵa = 0.33 in Eqs. (22) and (23) of Ref. [63].

We will assume that there are no energetic particles, only thermal ions and electrons, and that ne = ni. Also,
for the purposes of determining P for the Solov’ev equilibrium, we now set R0 = 1m and B0 = 1T. Then the
total pressure has the form P = P0(1 − ψn), with P0 = 4.273 × 104 Pa. Next we must specify the density profile
n(Ψ). We will use n = n0(1 − 0.7Ψn). Then the density on axis, n0, is determined by specifying (ωci/ωA)0, where
ωA0 = B0/(R0

√
µ0mini0) and ωci0 = eB0/mi = 47.906 MHz. For the comparisons here, we will use (ωci/ωA)0 = 121,

to be consistent with Ref. [63], even though this results in the values of ωA0 = 395.914 kHz and the unrealistically
high density n0 = 1.518 × 1021 m−3. The isotropic temperature profile is then determined from T = P/(2n). For
the Solov’ev case this means T = (P0/2n0)(1 − Ψn)/(1 − 0.7Ψn). Finally, we will use the E × B frequency profile
ωE = ωE0 (1−Ψn), with ωE/ωA0 = 1× 10−2 or ωE0 = 3.959 kHz as a nominal value, and νeff = 0.

Figure 2 shows (δWF + δW bM
A )/δWF for the various components of the fluid term, vs. T∥/T⊥. Each component is

normalized by its own δWF , not the total. To first order, the correction to the shear Alfvén, fast magneto-acoustic,
and kink terms can be approximated by δWA/δWF = σ0 − 1, where σ0 is the value on axis. Since we have considered
T∥/T⊥ to be a constant, pulling the factor 1− σ0 out of the integral leaves only a factor of B2

0/B
2 inside. This factor

serves to weight the contribution from the low field regions more heavily, but when integrated over the volume it
doesn’t have a very large effect. The small differences in the shear Alfvén, fast magneto-acoustic, and kink terms in
Fig. 2 are due to differences in their weighting, but overall using a simple factor of σ0 − 1 can provide a very good
estimate of the anisotropy correction of these terms (unless, of course, T∥/T⊥ is strongly dependent on location).

Not surprisingly, the correction to the pressure-driven ballooning destabilization term is considerably larger than
σ0 − 1. Here, as opposed to the other cases, lower T∥/T⊥ leads to a smaller total fluid effect. Higher T∥/T⊥ leads to
an increased effect, but the increase is not as strong as the decrease at low T∥/T⊥. Like the other terms, the δWA2

term is half from ions and half from electrons, and additionally we have found it to be dominated by trapped particles
over circulating particles.

Note that Fig. 2 shows normalized quantities. In absolute terms (though arbitrary units), the isotropic contributions
to δWF from shear Alfvén, fast magneto-acoustic, kink, and ballooning were 1.34×10−1, 3.95×10−4, −2.24×10−1, and
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FIG. 3. (Color online) a) Real and b) imaginary components of δWK normalized by the isotropic δWK vs. scaled T∥/T⊥ for
the Solov’ev equilibrium. The effect of anisotropy of three particles types, trapped ions and electrons and circulating ions, are
shown.

−4.35× 10−2, respectively. Therefore, while the changes to the shear Alfvén, fast magneto-acoustic, and kink terms
are essentially the same in a relative sense, the fast magneto-acoustic term is quite small in this case, and therefore
unimportant. Also the shear Alfvén term is stabilizing, and therefore positive, while the kink term is destabilizing,
and therefore negative. Therefore the corrections to these two terms partially offset each other. Finally, even though
the correction to the ballooning term was considerably larger in a relative sense, in this case it is actually only one
third of the shear Alfvén and one fifth of the kink term.

The kinetic effects for thermal particles are calculated with Eq. 18, resulting in both real and imaginary parts.
Figure 3 shows these contributions, normalized by their isotropic cases, plotted vs. T∥/T⊥. Three particle types,
trapped ions and electrons and circulating ions, are shown separately (the contribution from circulating electrons is
usually very small8). Generally, increased Re(δWK) is stabilizing, while increased |Im(δWK)| is always stabilizing
(see Fig. 1), and for this particular Solov’ev case each of the three components was positive. Therefore in Fig. 3 we can
interpret values greater than one as stabilizing and less than one as destabilizing, with respect to the isotropic case.
Check the sign of the circulating ion calculation. Trapped ion and electron kinetic stabilizing effects are enhanced
when T∥ < T⊥ and vice versa. Circulating ion stabilizing kinetic effects are reduced at T∥/T⊥ < 1 and little changed
above one. The difference between the trapped and circulating ion behavior with respect to T∥/T⊥ comes from the

ω∗T terms in the numerator of Eq. 24, which taken together tend to be smaller than the isotropic (ε/Tj − 3
2 )ω∗T

for T∥/T⊥ < 1 and χ near 1 (circulating particles) and larger than the isotropic value for T∥/T⊥ < 1 and χ near 0
(trapped particles). Finally, although the electron term changes more in a relative sense, again these are normalized
quantities and in this case (and usually) the trapped thermal ion term is dominant. Additionally, here collisions were
not considered. Collisions tend to greatly reduce the electron term57.

Using Eq. 1, we can finally calculate the predicted growth rate of the RWM and plot it vs. T∥/T⊥ in Fig. 4. First,
without considering kinetic effects, we can see the effect of the fluid anisotropy corrections on the fluid growth rate.
The effect of only the ballooning term δWA2 is shown in red, and of all the terms in green, showing that the ballooning
term is the dominant fluid anisotropy correction. Once again, we see that lower T∥/T⊥ is stabilizing and higher T∥/T⊥
is destabilizing, which follows from Fig. 2. When anisotropic kinetic effects are included, but not the fluid effects,
the plasma becomes more stable (γτw ≈ 0.43 → 0.30 in the isotropic case), and lower T∥/T⊥ is stabilizing, following
from Fig. 3 with trapped thermal ions dominant. When the kinetic and fluid corrections are both applied, the effect
is even more enhanced.

Overall the biggest effect on RWM stability from anisotropy of the thermal particles will be in plasmas with high
beta (where σ can be large), a large pressure-driven ballooning instability drive, and with T⊥ larger than T∥. In this
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FIG. 4. (Color online) The effect of anisotropy of thermal particles on the RWM growth rate for the Solov’ev equilibrium. The
growth rate normalized to the wall time is given by γτw = −Re((δW∞

v + x)/(δW b
v + x)). Shown is the isotropic fluid growth

rate (x = δWF ) and two modifications to it: including only the ballooning term (x = δWF + δW bM
A2 ) or all the anisotropic

fluid corrections (x = δWF + δW bM
A ). Also shown is the isotropic kinetic growth rate (x = δWF + δWK) and two modifications

to it: including only the anisotropic kinetic term (x = δWF + δW bM
K ) or including both the fluid and kinetic corrections

(x = δWF + δW bM
A + δW bM

K ).

case a reduction of the ballooning destabilization term can be expected, as well as an enhancement of the stabilizing
kinetic effects of the trapped thermal ions.

B. The Effect of Energetic Particle Pressure Anisotropy

To explore the dependence of RWM stability on the anisotropy of energetic particles, we will now use a real
experimental equilibrium from NSTX (shot 121090 at 0.601s) which has energetic ions from neutral beam injection.
The thermal particles will be considered Maxwellian (contributing a δWM

K ). Figure 5 shows the energetic particle
distribution function for the NSTX equilibrium near the core (r/a = 0.05), as calculated by TRANSP64 and modeled
by Eq. 25 for f bj with χ0 = 0.5 and δχ0 = 0.2. More details of this figure and future improvements to the model are
discussed separately in the next section (Sec. VIII). For the purposes of the remainder of this section, we will now
proceed by considering χ0(Ψ) and δχ0(Ψ) to be constants, even if this may not provide the best match to experimental
conditions, in order to parameterize the effect of energetic particle anisotropy on these two parameters. χ0 = 0 is akin
to perpendicular beam injection, and χ0 = 1 to parallel; smaller δχ0 indicates a more narrow distribution while larger
δχ0 is getting closer to the isotropic case. The study performed here, looking at the effect of the injection pitch angle
and the breadth of the pitch angle spread, is complimentary to a previous one (Ref. [15]) which looked at the effect
of the beam injection energy and a changing deposition location in Ψ (such as might come from an off-axis neutral
beam).
Note that the distribution function does contain a Ψ dependence through ε̂ (through Te(Ψ)), and of course through

the density nj(Ψ). We will not alter these quantities, however, using the experimental Te profile, and TRANSP calculated
energetic particle density profile. Whereas previously (Ref. [10]) pj(Ψ) was also taken from TRANSP for the beam ion
pressure, and then an εb(Ψ) profile consistent with the TRANSP density and pressure and our distribution function
model was determined, here we use only nj(Ψ) from TRANSP and constant, known εb for the beams. This effectively
determines pj(Ψ), which may differ from what TRANSP determines for pj(Ψ).
Let us now proceed to discuss the impact of energetic particle anisotropy on the fluid terms. Here we will consider

σ − 1 ≈ 0 in order to concentrate on the ballooning term, which is the most important. Figures 6-8 show contours of
γτw = −Re((δW∞

V + x)/(δW b
V )) vs. scaled constant χ0 and δχ0. For thermal particles only x = xth = δWF + δWM

K .
In these figures the range of χ0 from 0 to 1 is shown, but the effects are exactly the same for counter-injection (-1 to
0), which can be seen from careful examination of Eqs. 30, 31, and 38.
Figure 6 shows γτw with x = xth + δWA2, ie. it includes only the ballooning correction. Figure 6 includes both

trapped and circulating energetic particles, but as in the bi-Maxwellian case, we find that δWA2 is dominated by
trapped particles. Due to the (χ4−1)(∂fj/∂χ) term in Eq. 34, trapped energetic particles at small χ are emphasized.



13

a) εb = 95

sl
ow

in
g 

d
ow

n

-1.0 -0.5 0.0 0.5 1.0
χ

0

50

100

ε 
(k

eV
)

     

 

 

 

b)

χ0

χ0-δχ(ε)

χ0+δχ(ε)

-1.0 -0.5 0.0 0.5 1.0
χ

 

 

 
     

 

 

 

FIG. 5. (Color online) Contours of the distribution function fb
j of energetic particles in NSTX shot 121090 at 0.6s, at the

surface with r/a = 0.05 a) as determined by TRANSP, and b) as modeled by Eq. 25 with χ0 = 0.5 and δχ0 = 0.2.
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FIG. 6. (Color online) Contours of γτw including δWA2 and δWM
K (thermal particles), but not δW b

K (energetic particles) for
trapped and circulating energetic particles in the NSTX equilibrium, where the anisotropic slowing-down distribution function
is described by scaled constant χ0 and δχ0. χ0 = 0 is akin to perpendicular beam injection, and χ0 = 1 to parallel. Smaller
δχ0 indicates a more narrow distribution while larger δχ0 is getting closer to the isotropic case. The approximate NSTX
experimental values from Fig. 5 are marked with a × symbol.

There tends to be a sharp gradient of the distribution at small χ when the injection pitch is near there (perpendicular
injection, χ0 near 0), and a flatter ∂fj/∂χ at small χ when the injection is more perpendicular. This accounts for
the larger δWA2 at smaller χ0. However, ∂fj/∂χ is symmetric in χ when χ0 = 0, so when the injection is perfectly
perpendicular δWA2 = 0. The net result is that the contribution from δWA2 peaks near χ0 = 0.25. Finally, in general
more narrow distributions (smaller δχ0) means a larger ∂fj/∂χ and therefore a larger δWA2, while as δχ0 → ∞ in
the isotropic case, the derivative and δWA2 are zero. Overall, we can see that the stabilizing anisotropic correction
to the ballooning term can be quite significant; at the approximate NSTX values of χ0 = 0.5, δχ0 = 0.2 (see Fig. 5),
γτw is quite stable (−0.4X vs. the value with thermal particles only of −0.24), and a more perpendicular injection
could provide an even larger stability increment.
Figure 7 once again shows contours of γτw vs. scaled constant χ0 and δχ0. This time x = xth + δW b

K , ie. the
anisotropic energetic particle’s kinetic effects are included but δWA2 is not. Also here we are showing separately the
real and imaginary contributions to δW b

K , for trapped and circulating energetic particles. For trapped particles the
real part is destabilizing at low χ0 and stabilizing at larger χ0, while the imaginary part is strongly stabilizing at low
χ0. For circulating particles, the real part is more stabilizing at larger χ0, while the imaginary part is stabilizing at
high χ0 and destabilizing at lower χ0. In every case the effects are amplified by a more narrow distribution (lower δχ0).
Such a complex picture of the effect of beam ion injection angle on RWM stability could not have been determined
by examination of Eqs. 19, 30, and 31, but comes though with the full calculation. For the approximate NSTX case
marked in the figure, the energetic particles are about 3− 5% stabilizing in three cases and destabilizing in one.
Finally, putting all the terms together, Fig. 8 shows the growth rate vs. scaled constant χ0 and δχ0, with the

ballooning anisotropy fluid correction and anisotropic kinetic effects both taken into account (essentially the additive
effect of Figs. 6 and 7a-d). Altogether, the stabilizing effect of the energetic particles is between 15−40% (17% for the
NSTX case) compared to the thermal particle only case. The stabilizing effect is greatest for narrow beam spreading
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FIG. 7. (Color online) Contours of γτw vs. scaled constant χ0 and δχ0, where γτw includes δWM
K and a) Re(δW b

K) for
trapped energetic particles, b) Re(δW b

K) for circulating energetic particles, c) Im(δW b
K) for trapped energetic particles, and

d) Im(δW b
K) for circulating energetic particles in the NSTX equilibrium. The approximate NSTX experimental values from

Fig. 5 are marked with a × symbol. A contour of (γτw)th = −0.24 for the thermal particle only case is marked for comparison.
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and an injection pitch of about 0.25, due mostly to the δWA2 ballooning correction and the Im(δW b
K) for trapped

energetic particles.
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VIII. FURTHER IMPROVEMENTS TO THE ENERGETIC PARTICLE DISTRIBUTION FUNCTION MODEL

In this work both χ0 and δχ0 in the anisotropic slowing-down distribution function were considered constants for
the sake of simplified discussion and plotting of Figs. 6-8. It is straightforward to allow each of these quantities to be
a factor of Ψ, the surface coordinate. Secondly, Eq. 25 for f bj can be made more general by making it a sum of many
different particle types, so that if, for example, there are s number of beam sources, k number of energy components,
and p surfaces of deposition, the total energetic particle distribution is fully described by the linear superposition of
s × k × p separate distributions of the form of Eq. 25. In NSTX this means up to 3 beam sources, with 3 energy
components (full, half and one-third), and 2 surfaces of deposition each, for a possible total of 18 different f bj terms.

As an example, in Fig. 5a, the beam energy was 95 keV, and one can see that steps in f bj at 42.5 keV and 31.7 keV
are not reflected in the model in Fig. 5b. Also, the present model does a better job near the axis, because towards the
edge the splitting of the beam deposition into two pitch angles (two χ0s, where the beam enters and exits the surface)
becomes more pronounced. Fortunately energetic particle density is higher near the axis, making these particles more
important to accurately model. Use of multiple, superposed distribution functions may become necessary, however,
to accurately model the energetic particles in NSTX-U, which will have a second, off-axis neutral beam, or for DIII-D,
which has multiple beams including one that can be tilted. Additionally, ITER will have multiple important heating
sources65,66, which may affect the energetic particle distribution in an even more complex way.

IX. CONCLUSIONS AND PHYSICAL IMPLICATIONS

We have derived the effect of anisotropy of the plasma pressure on the resistive wall mode stability energy principle.
The fluid anisotropy has been treated as a small perturbation on the plasma equilibrium, which allows a relatively
simple treatment of the problem. Fluid treatment with CGL pressures is akin to consideration of the high frequency
mode rotation limit. More complete treatment leads to kinetic terms in addition to anisotropy corrections to the fluid
terms. Specifically, the shear Alfvén, fast magneto-acoustic, and kink fluid terms are relatively simply modified by a
factor of σ. Because of the equilibrium considerations in the perturbative approach, these corrections are necessarily
small in our treatment. The kinetic effects depend upon ∂f/∂ε and ∂f/∂Ψ, while the anisotropy correction to the fluid
pressure-driven ballooning term depends upon ∂f/∂χ. We have derived expressions for these terms for a perturbed
bi-Maxwellian distribution function for thermal particles and an anisotropic slowing-down distribution for energetic
particles

For thermal particles with T⊥ larger than T∥ the ballooning destabilization term is reduced while the stabilizing
kinetic effects of the trapped thermal ions are enhanced, leading to an increase in RWM stability. Note, however, that
in the analysis presented here (for an analytical Solov’ev equilibrium) T∥/T⊥ was assumed to be changed over the
whole plasma volume, and had to be relatively significantly different from unity to see a large effect. Such a scenario
would be difficult to achieve in experimental reality. In this light, the effect of realistic thermal particle anisotropy on
RWM stability is likely to be quite modest. Extension of this relevant physics to less global modes, such as sawteeth,
is possible, however.

For energetic particles we have concentrated on calculation of the effect of anisotropic slowing-down beam ions on
NSTX stability, as well as the consequences of perpendicular vs. parallel injection and broad vs. narrow spreading in
pitch angle. The ballooning term is modified to be less destabilizing, especially for beam ions with injection pitch angle
of about 0.25 and a narrow spread. The kinetic effect from the anisotropic energetic particles is complex, and made
up of real and imaginary trapped and circulating parts. Generally, the overall effect of beam ions is to be significantly
stabilizing, but the degree of which depends on the injection pitch and width of spread, again maximizing at χ0 ≈ 0.25
and small δχ0. One major caveat to this analysis is that the beams impart momentum, so changing their injection to
a more perpendicular angle will inevitably reduce the total plasma rotation. This type of self-consistent analysis has
not been attempted here (rotation was held constant at the experimental value), but would be important for a full
understanding of the impact of beam ions on RWM stability.
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Appendix A: Derivation of CGL Perturbed Fluid Pressures Using Double-Polytropic Laws

This section is should not be included
The perturbed fluid pressures, p̃⊥ and p̃∥ can be derived by using double-polytropic laws67,68 as replacements

for the adiabatic equation: d(p∥B
γ∥−1ρ−γ∥)/dt = 0, and d(p⊥B

1−γ⊥ρ−1)/dt = 0. The CGL double-adiabatic

equations27,30,31,69,70, which are derived from the first and second adiabatic invariants71 under the assumption of
negligible heat flux72,73 have γ∥ = 3 and γ⊥ = 2.

From the p∥ equation, we find68,73:

∂p∥

∂t
+ v ·∇p∥ = −

(
γ∥ − 1

) p∥
B

b̂ ·
(
∂B

∂t
+ v ·∇B

)
+ γ∥

p∥

ρ

(
∂ρ

∂t
+ v ·∇ρ

)
(A1)

(−iω + v0 ·∇) p̃∥ + ṽ ·∇p∥ = −
(
γ∥ − 1

) p∥
B

b̂ ·
(
(−iω + v0 ·∇) B̃+ ṽ ·∇B0

)
+ γ∥

p∥

ρ
((−iω + v0 ·∇) ρ̃+ ṽ ·∇ρ0)

(A2)

(−iω + v0 ·∇)
(
p̃∥ + ξ⊥ ·∇p∥

)
= (−iω + v0 ·∇)

[
−
(
γ∥ − 1

) p∥
B

b̂ ·
(
B̃+ ξ⊥ ·∇B0

)
+ γ∥

p∥

ρ
(ρ̃+ ξ⊥ ·∇ρ0)

]
(A3)

Now using B̃ = ∇× (ξ⊥ ×B0) = −B0(∇ · ξ⊥) and ρ̃ = −ρ0∇ · ξ⊥ − (ξ⊥ ·∇) ρ0, we have:

p̃∥ = −ξ⊥ ·∇p∥ −
(
γ∥ − 1

) p∥
B

b̂ · (−B0 (∇ · ξ⊥) + ξ⊥ ·∇B0) + γ∥
p∥

ρ
(−ρ0∇ · ξ⊥) (A4)

= −ξ⊥ ·∇p∥ −
(
γ∥ − 1

)
p∥ (κ · ξ⊥ −∇ · ξ⊥)− γ∥p∥∇ · ξ⊥ (A5)

= −ξ⊥ ·∇p∥ − p∥∇ · ξ⊥ +
(
1− γ∥

)
p∥κ · ξ⊥. (A6)

Similarly, for p⊥,

p̃⊥ = −ξ⊥ ·∇p⊥ − (1− γ⊥) p⊥ (κ · ξ⊥ −∇ · ξ⊥)− p⊥∇ · ξ⊥ (A7)

= −ξ⊥ ·∇p⊥ − γ⊥p⊥∇ · ξ⊥ + (γ⊥ − 1) p⊥κ · ξ⊥. (A8)

For the CGL case this leads finally to:

p̃∥ = −ξ⊥ ·∇p∥ − p∥∇ · ξ⊥ − 2p∥κ · ξ⊥, (A9)

p̃⊥ = −ξ⊥ ·∇p⊥ − 2p⊥∇ · ξ⊥ + p⊥κ · ξ⊥. (A10)

Appendix B: Derivation of CGL Perturbed Fluid Pressures Using the High Frequency Limit of the Perturbed Distribution
Function.

The perturbed fluid pressures, p̃⊥ and p̃∥ can be derived by using double-polytropic laws67,68 as replacements

for the adiabatic equation: d(p∥B
γ∥−1ρ−γ∥)/dt = 0, and d(p⊥B

1−γ⊥ρ−1)/dt = 0. The CGL double-adiabatic

equations27,30,31,69,70, which are derived from the first and second adiabatic invariants71 under the assumption of
negligible heat flux72,73 have γ∥ = 3 and γ⊥ = 2. Here we will demonstrate that in fact the CGL p̃⊥ and p̃∥ expres-
sions can also be recovered from Eq. 12 (neglecting the electrostatic contribution) using a bi-Maxwellian equilibrium

distribution function and our form of f̃j from Eq. 13, with the assumption of fast mode rotation.

Let us now examine f̃j in the limit of large ω (which in reality pertains to high frequency modes, not the RWM ).

Then we can take a gyro-average (⟨·⟩) of fj and in Eq. 13, ω(∂fj/∂ε) ≫ n(∂fj/∂Pϕ), ⟨v⊥ · ξ⊥⟩ = 0, ⟨v⊥ · B̃⟩ = 0 and

⟨s̃j⟩ = ⟨
∫ t

−∞

(
v · dξ⊥

dt′
− Z̃
mj

)
dt′⟩ ≈ ⟨HTj⟩

imjω
, (B1)

so that:
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f̃ω→∞
j = −ξ⊥ ·∇fj −

∂fj
∂ε

(
⟨HTj⟩ − Zje

(
Φ̃+ ξ⊥ ·∇Φ0

))
− µ

B̃∥

B

∂fj
∂µ

. (B2)

Now,

f̃ω→∞
j +

∂fj
∂B

ξ⊥ ·∇B = −ξ⊥ ·∇fj −
∂fj
∂ε

(
⟨HTj⟩ − Z̃

)
− µ

B

∂fj
∂µ

(
B̃∥ + ξ⊥ ·∇B

)
(B3)

= −ξ⊥ ·∇fj −mj
∂fj
∂ε

(
1

2
v2⊥∇ · ξ⊥ +

1

2
v2⊥κ · ξ⊥ − v2∥κ · ξ⊥

)
− µ

∂fj
∂µ

(κ · ξ⊥ +∇ · ξ⊥) ,

(B4)

where in the last line we have used Eq. 6 of Ref. [12] for ⟨H⟩ and B̃∥ = −B (∇ · ξ⊥ + κ · ξ⊥)− b̂ · ξ⊥ ·∇B.

From Eq. 21 for the bi-Maxwellian distribution ∂fj/∂ε = −fj/Tj∥, and ∂fj/∂µ = −fjB
(

1
Tj⊥

− 1
Tj∥

)
. Now making

these substitutions we find that:

f̃ω→∞
j +

∂fj
∂B

ξ⊥ ·∇B =− ξ⊥ ·∇fj + fjmj

[
1

Tj∥

(
−v2∥κ · ξ⊥

)
+

1

Tj⊥

(
1

2
v2⊥κ · ξ⊥ − 1

2
v2⊥∇ · ξ⊥

)]
. (B5)

We then define the quantities R1, R2, and R3 as in Ref. [74]:

R1 =
∑
j

mj

∫
v4∥fjd

3v =
3p2∥

ρ
, (B6)

R2 =
1

2

∑
j

mj

∫
v2∥v

2
⊥fjd

3v =
p∥p⊥

ρ
, (B7)

R3 =
1

2

∑
j

mj

∫
v4⊥fjd

3v =
4p2⊥
ρ
. (B8)

Now from Eq. 12

p̃∥ =
∑
j

mj

∫
v2∥

(
f̃ω→∞
j +

∂fj
∂B

ξ⊥ ·∇B

)
d3v (B9)

=− ξ⊥ ·∇p∥ −
mj

Tj∥
R1κ · ξ⊥ +

mj

Tj⊥
R2κ · ξ⊥ − mj

Tj⊥
R2∇ · ξ⊥ (B10)

=− ξ⊥ ·∇p∥ − p∥∇ · ξ⊥ − 2p∥κ · ξ⊥, (B11)

and

p̃⊥ =
∑
j

1

2
mj

∫
v2⊥

(
f̃ω→∞
j +

∂fj
∂B

ξ⊥ ·∇B

)
d3v (B12)

− ξ⊥ ·∇p⊥ − mj

Tj∥
R2κ · ξ⊥ +

mj

2Tj⊥
R3κ · ξ⊥ − mj

2Tj⊥
R3∇ · ξ⊥ (B13)

=− ξ⊥ ·∇p⊥ − 2p⊥∇ · ξ⊥ + p⊥κ · ξ⊥, (B14)

Appendix C: Self-adjointness of the Anisotropic Fluid δW

In order to show that δWF + δWA is self-adjoint, we must look at both the ballooning term from Eq. 16, and the
kink term from Eqs. 16 and 17 together. Beginning with the kink term we write:
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δW kink
F+A =

1

2

∫
σj∥

2B

((
ξ∗⊥ ×B

)
· B̃⊥ +

(
ξ∗⊥ ×B

)
· B̃⊥

)
dV (C1)

=
1

2

∫
σj∥

2B

((
ξ∗⊥ ×B

)
·∇× (ξ⊥ ×B) +

(
ξ∗⊥ ×B

)
· B̃⊥

)
dV (C2)

=
1

2

∫
σj∥

2B

(
∇ ·

((
ξ⊥ × ξ∗⊥ ·B

)
B
)
+ (ξ⊥ ×B) ·∇×

(
ξ∗⊥ ×B

)
+
(
ξ∗⊥ ×B

)
· B̃⊥

)
dV (C3)

=
1

2

∫ (
∇ ·

(
σj∥

2B

(
ξ⊥ × ξ∗⊥ ·B

)
B

)
−
(
ξ⊥ × ξ∗⊥ ·B

)
B ·∇

(
σj∥

2B

)
+
σj∥

2B

(
(ξ⊥ ×B) · B̃∗

⊥ +
(
ξ∗⊥ ×B

)
· B̃⊥

))
dV.

(C4)

The first term integrates to zero over the volume. The last terms together are self-adjoint. Defining ξ⊥ = ξΨêΨ +
ξχêχ, with êΨ = ∇Ψ/|∇Ψ| and êχ = b̂×∇Ψ/|∇Ψ|, and rewriting, we have:

δW kink
F+A =

1

2

∫ (
σj∥

2B

(
(ξ⊥ ×B) · B̃∗

⊥ +
(
ξ∗⊥ ×B

)
· B̃⊥

)
−
(
ξΨξ∗χ − ξχξ

∗
Ψ

)
B∇ ·

(
σj∥

2
b̂

))
dV. (C5)

Now let us return to the ballooning term and write:

δW ballooning
F+A =

∫ (
κΨξ∗Ψ + κχξ

∗
χ

)(
ξ⊥ ·∇Ψ

∂pavg
∂Ψ

+ ξ⊥ ·∇B
∂pavg
∂B

)
dV (C6)

=

∫ ((
ξΨξ∗ΨκΨ + ξΨξ∗χκχ

)(
|∇Ψ|∂pavg

∂Ψ
+ êΨ ·∇B

∂pavg
∂B

)
+
(
ξχξ

∗
χκχ + ξχξ

∗
ΨκΨ

)(
êχ ·∇B

∂pavg
∂B

))
dV.

(C7)

Then let us momentarily consider

∇× b̂ ·∇pavg = ∇× b̂ ·∇Ψ
∂pavg
∂Ψ

+∇× b̂ ·∇BΨ
∂pavg
∂B

(C8)

= ∇× b̂ ·∇Ψ
∂pavg
∂Ψ

+∇× b̂ ·∇Ψ
∂B

∂Ψ

∂pavg
∂B
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(
∇× b̂ · b̂

)(
b̂ ·∇B

) ∂pavg
∂B

+
(
∇× b̂ · êχ

)
(êχ ·∇B)

∂pavg
∂B

(C9)

= −κχ|∇Ψ|∂pavg
∂Ψ

− κχ (êΨ ·∇B)
∂pavg
∂B

+
j∥
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(
b̂ ·∇B
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, (C10)

so that now

δW ballooning
F+A =

∫ (
|ξΨ|2κΨ

(
|∇Ψ|∂pavg

∂Ψ
+ êΨ ·∇B
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From the equilibrium considered in Sec. III, one can show that the last term can be replaced so that (more detail?)

δW ballooning
F+A =

∫ (
|ξΨ|2κΨ

(
|∇Ψ|∂pavg
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+ êΨ ·∇B
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Then one can see that

δW kink
F+A + δW ballooning

F+A =
1

2
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+ êΨ ·∇B

∂pavg
∂B

)
+ 2|ξχ|2κχ

(
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is self-adjoint.
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