

Supported by

Anisotropy

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL **Johns Hopkins U** LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin**

X Science LLC

J.W. Berkery

Department of Applied Physics, Columbia University, New York, NY, USA

Rochester, New York March 15, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev **loffe Inst** TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Pressure anisotropy leads to a modification of the Energy Principle

$$-i\omega\tau_w = -\frac{\delta W_V^\infty + \delta W_F + \delta W_A + \delta W_K}{\delta W_V^b + \delta W_F + \delta W_A + \delta W_K}$$

 $\begin{array}{l} \delta W_{V}: \text{ usual changes in vacuum potential} \\ \text{energy without a wall, and with an ideal wall} \\ \delta W_{F}: \text{ usual isotropic fluid term} \\ \underline{\delta W_{A}: \text{ anisotropic fluid correction}} \\ \delta W_{K}: \text{ kinetic term (also modified by anisotropy)} \end{array}$

$$\omega = \omega_r + i\gamma$$

 ω_r : real mode rotation frequency γ : RWM growth rate

Stability diagram showing contours of $\gamma \tau_w = 0$ on Re(δW_K) vs. Im(δW_K) with

 δW_{ω} = -1 and δW_{b} = 1 [arb.].

Positive δW_A shifts the unstable region to the left, negative δW_A to the right.

The effect of anisotropy on the plasma equilibrium must be small for the perturbative approach to stability calculation

Define an anisotropy parameter:
$$\sigma = 1 + \frac{\mu_0 \left(p_\perp - p_\parallel \right)}{B^2}$$

Then the plasma equilibrium in the perpendicular direction is:

$$\boldsymbol{\nabla}_{\perp} \left(\frac{\mathbf{B}^2}{2\mu_0} + \frac{p_{\parallel} + p_{\perp}}{2\sigma} \right) = \boldsymbol{\kappa} \frac{B^2}{\mu_0}$$

Now define a corrected magnetic field: $\mathbf{D}=\mathbf{B}\sqrt{\sigma}$

Then:
$$\boldsymbol{\nabla}_{\perp} \left(\frac{\mathbf{D}^2}{2\mu_0} + p_{\mathrm{avg}} \right) = \boldsymbol{\kappa} \frac{D^2}{\mu_0}$$

So, the plasma equilibrium can be considered to first order the isotropic equilibrium, and then having an anisotropic correction of the second order. The perturbative approach is valid as long as $\sigma \approx 1$.

() NSTX-U

Т

Two anisotropic distributions are considered: bi-Maxwellian for thermal particles, slowing-down for energetic particles

A bi-Maxwellian distribution with different temperatures \perp and \parallel to the magnetic field: $f_j^{bM}(\varepsilon, \Psi, \chi) = n_j \left(\frac{m_j}{2\pi}\right)^{\frac{3}{2}} \frac{1}{T_{j\perp}T_{j\parallel}^{\frac{1}{2}}} e^{-\varepsilon\chi^2/T_{j\parallel}} e^{-\varepsilon(1-\chi^2)/T_{j\perp}}$

A slowing down distribution function with a Gaussian distribution of particles in χ :

$$f_j^b(\varepsilon,\Psi,\chi) = n_j A_b \left(\frac{m_j}{\varepsilon_b}\right)^{\frac{3}{2}} \frac{1}{\hat{\varepsilon}^{\frac{3}{2}} + \hat{\varepsilon}_c^{\frac{3}{2}}} \frac{1}{\delta\chi} \left(\exp\left[\frac{-\left(\chi - \chi_0\right)^2}{\delta\chi^2}\right] + \exp\left[\frac{-\left(\chi + 2 + \chi_0\right)^2}{\delta\chi^2}\right] + \exp\left[\frac{-\left(\chi - 2 + \chi_0\right)^2}{\delta\chi^2}\right] \right)$$

() NSTX-U

4

The kinetic approach is used to obtain δW_{κ} ; Anisotropic distribution functions affect the kinetic terms

 δW terms are calculated starting from a plasma force balance:

$$\delta W = \frac{1}{2} \int \boldsymbol{\xi}_{\perp}^{*} \cdot \left[\mathbf{j}_{\mathbf{0}} \times \tilde{\mathbf{B}} + \tilde{\mathbf{j}} \times \mathbf{B}_{\mathbf{0}} - \boldsymbol{\nabla} \cdot \tilde{\mathbb{P}} \right] d\mathbf{V}$$

with:
$$\mathbb{P} = p_{\parallel} \hat{\mathbf{b}} \hat{\mathbf{b}} + p_{\perp} \left(\hat{\mathbf{I}} - \hat{\mathbf{b}} \hat{\mathbf{b}} \right)$$

CGL pressures are akin to assumption of fast rotating mode (*not the RWM*), and will not be used. Instead in the kinetic approach, the perturbed pressures are calculated rigorously from the perturbed distribution function:

$$\tilde{f}_{j} = -\boldsymbol{\xi}_{\perp} \cdot \boldsymbol{\nabla} f_{j} + Z_{j} e \frac{\partial f_{j}}{\partial \varepsilon} \tilde{\boldsymbol{\Phi}} + i m_{j} \left(\omega \frac{\partial f_{j}}{\partial \varepsilon} - n \frac{\partial f_{j}}{\partial P_{\phi}} \right) \left(\mathbf{v} \cdot \boldsymbol{\xi}_{\perp} - \tilde{s}_{j} \right) - \frac{m_{j}}{B} \frac{\partial f_{j}}{\partial \mu} \left(-i \omega \boldsymbol{\xi}_{\perp} \cdot \mathbf{v}_{\perp} + \frac{\mu}{m_{j}} \tilde{\mathbf{B}}_{\parallel} + \frac{v_{\parallel}}{B} \mathbf{v}_{\perp} \cdot \tilde{\mathbf{B}} \right)$$

Kinetic effects are modified by inclusion of bi-Maxwellian or anisotropic slowing-down distributions in frequency resonance fraction calculation

$$\delta W_K = \sum_j \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^2 \int \int \int \left[|\langle H/\hat{\varepsilon} \rangle|^2 \frac{(\omega - n\omega_E) \frac{\partial f_j}{\partial \varepsilon} - \frac{n}{Z_j e} \frac{\partial f_j}{\partial \Psi}}{n \langle \omega_D^j \rangle + l\omega_b^j - i\nu_{\text{eff}}^j + n\omega_E - \omega} \right] \frac{\hat{\tau}}{m_j^{\frac{3}{2}} B} |\chi| \hat{\varepsilon}^{\frac{5}{2}} d\hat{\varepsilon} d\chi d\Psi,$$

5

Additionally, an anisotropic correction to the fluid term principally modifies the ballooning destabilization term

$$\delta W_F = \frac{1}{2} \int \left\{ \underbrace{\left(-\frac{|\tilde{B}_{\perp}|^2}{\mu_0} - \frac{B^2}{\mu_0} |\nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa|^2 + j_{\parallel} \left(\xi_{\perp}^* \times \hat{b} \right) \cdot \tilde{B}_{\perp} \right)}_{\text{shearAlfvén fast magneto-acoustic kink}} + 2 \underbrace{\left(\kappa \cdot \xi_{\perp}^* \right) \left(\xi_{\perp} \cdot \nabla p_{\text{avg}} \right)}_{\text{ballooning}} \right\} d\mathbf{V},$$

$$\delta W_A = \frac{1}{2} \int \left\{ \underbrace{\left(\sigma - 1 \right) \left(-\frac{|\tilde{B}_{\perp}|^2}{\mu_0} - \frac{B^2}{\mu_0} |\nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa|^2 + j_{\parallel} \left(\xi_{\perp}^* \times \hat{b} \right) \cdot \tilde{B}_{\perp} \right)}_{\text{These will be small due to } \sigma \approx 1.$$

Note: terms 1, 2, and 3 together can be shown to be self-adjoint, so that $\delta W_F + \delta W_A$ is self-adjoint

$$\overset{\bullet}{\longrightarrow} \delta W_{A2} = \sqrt{2}\pi^2 \int \int \int \frac{1}{m_j^{\frac{3}{2}}} |\boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{\perp} + \boldsymbol{\kappa} \cdot \boldsymbol{\xi}_{\perp}|^2 \left(\chi^4 - 1\right) \frac{\partial f_j}{\partial \chi} \frac{\hat{\tau}}{B} \varepsilon^{\frac{3}{2}} d\varepsilon d\chi d\Psi.$$

The anisotropic correction to the ballooning term depends upon the derivative of the distribution function with respect to pitch angle, $\chi = v_{\parallel}/v$.

The anisotropic ballooning correction can make a significant impact on the calculated RWM growth rate

- As T_{\parallel}/T_{\perp} is reduced, the destabilizing ballooning term is reduced.
- Up to 30% reduction in RWM fluid growth rate in a test case.

Anisotropic energetic particles

(and isotropic thermal particles)

- With thermal particles only $\gamma \tau_w = -0.24$.
- With approx. NSTX values of $\chi_0 = 0.5$ and $\delta \chi_0 = 0.2$, stability is improved by almost a factor of two!

The kinetic effects of anisotropic particles also make a significant impact on the calculated RWM growth rate

Anisotropic thermal particles

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 $$T_{\mbox{\tiny II}}/T_{\mbox{\tiny L}}$$

- As T_∥/T_⊥ is reduced, the stabilizing kinetic term is increased.
- Up to 66% reduction in RWM kinetic growth rate in a test case with both kinetic effects and anisotropic fluid corrections (δW_A).

Anisotropic energetic particles (and isotropic thermal particles)

 Large increase in RWM kinetic stability for an NSTX case from kinetic effects of anisotropic EPs and anisotropic fluid corrections (δW_A).

XXX

XXX

FIG. 7. (Color online) Contours of $\gamma \tau_w$ vs. scaled constant χ_0 and $\delta \chi_0$, where $\gamma \tau_w$ includes δW_K^M and a) $Re(\delta W_K^b)$ for trapped energetic particles, b) $Re(\delta W_K^b)$ for circulating energetic particles, c) $Im(\delta W_K^b)$ for trapped energetic particles, and d) $Im(\delta W_K^b)$ for circulating energetic particles in the NSTX equilibrium. The approximate NSTX experimental values from Fig. 5 are marked with a \times symbol. A contour of $(\gamma \tau_w)_{th} = -0.24$ for the thermal particle only case is marked for comparison.

March 15, 2012

Nov 2011 Joint Experiment - Off-axis NBI appears to have a smaller impact on RWM stability in usual *B*_t

- In <u>reversed B_t</u>, (Sept. 2011)
 observed reduction in plasma response with off-axis NBI
 - Consistent with increased RWM stability
- In usual B_t, modulating the off-axis beam leads to smaller impact on plasma response
- Note:
 - Slightly differing levels on β_N, ℓ_i,
 rotation between the two shots
 - Couldn't modulate off-axis power more than ~25% at constant β (Nov 2011)
 - Ideal, kinetic stability calculations planned to understand results

Nov 2011 Joint Experiment – Shot taken with lowest RWM stability observed in this experiment to date

Part of experiment aimed to minimize plasma stability

- Choose parameters from previous scans that give largest plasma resonant field amplification
- 1 shot: Maximized β_N/ℓ_i at intermediate NBI torque -> maximum plasma response
- Associated goal: demonstrate reduced stability most clearly by driving RWM unstable
 - By changing NBI sources, plasma rotation
 - Did not occur during this run at slightly reduced τ_E , reduced NBI
 - Modified experimental idea submitted for 2012

J. M. Hanson | DIII-D morning coordination meeting | 1 Dec 2011

Energetic particle distribution function 34041 @ 400s

🔘 NSTX-U